Mediated gates between spin qubits

被引:12
作者
Fei, Jianjia [1 ]
Zhou, Dong [2 ]
Shim, Yun-Pil [1 ]
Oh, Sangchul [3 ]
Hu, Xuedong [3 ]
Friesen, Mark [1 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[3] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 06期
基金
美国国家科学基金会;
关键词
QUANTUM COMPUTATION; 2-QUBIT GATE; ENTANGLEMENT; STATE;
D O I
10.1103/PhysRevA.86.062328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a typical quantum circuit, nonlocal quantum gates are applied to nonproximal qubits. If the underlying physical interactions are short-range (e. g., exchange interactions between spins), intermediate SWAP operations must be introduced, thus increasing the circuit depth. Here we develop a class of "mediated" gates for spin qubits, which act on nonproximal spins via intermediate ancilla qubits. At the end of the operation, the ancillae return to their initial states. We show how these mediated gates can be used (1) to generate arbitrary quantum states and (2) to construct arbitrary quantum gates. We provide some explicit examples of circuits that generate common states [e.g., Bell, Greenberger-Horne-Zeilinger (GHZ), W, and cluster states] and gates (e.g., root SWAP, SWAP, CNOT, and Toffoli gates). We show that the depths of these circuits are often shorter than those of conventional SWAP-based circuits. We also provide an explicit experimental proposal for implementing a mediated gate in a triple-quantum-dot system.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
[Anonymous], 1978, GLOBAL OPTIMISATION
[2]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[3]   Quantum computing with an always-on Heisenberg interaction [J].
Benjamin, SC ;
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 90 (24) :4
[4]   Production of multipartite entanglement for electron spins in quantum dots [J].
Bodoky, F. ;
Blaauboer, M. .
PHYSICAL REVIEW A, 2007, 76 (05)
[5]   Practical scheme for quantum computation with any two-qubit entangling gate [J].
Bremner, MJ ;
Dawson, CM ;
Dodd, JL ;
Gilchrist, A ;
Harrow, AW ;
Mortimer, D ;
Nielsen, MA ;
Osborne, TJ .
PHYSICAL REVIEW LETTERS, 2002, 89 (24)
[6]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[7]   Two-Qubit Gate of Combined Single-Spin Rotation and Interdot Spin Exchange in a Double Quantum Dot [J].
Brunner, R. ;
Shin, Y. -S. ;
Obata, T. ;
Pioro-Ladriere, M. ;
Kubo, T. ;
Yoshida, K. ;
Taniyama, T. ;
Tokura, Y. ;
Tarucha, S. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)
[8]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[9]  
Dirac P. A. M., 1982, PRINCIPLES QUANTUM M
[10]  
DiVincenzo D. P., ARXIVCONDMAT9409111