Convex geodesic bicombings and hyperbolicity

被引:38
作者
Descombes, Dominic [1 ]
Lang, Urs [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Geodesic bicombing; Injective hull; Tight span; Hyperbolic group; Absolute retract; SPACES;
D O I
10.1007/s10711-014-9994-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A geodesic bicombing on a metric space selects for every pair of points a geodesic connecting them. We prove existence and uniqueness results for geodesic bicombings satisfying different convexity conditions. In combination with recent work by the second author on injective hulls, this shows that every word hyperbolic group acts geometrically on a proper, finite dimensional space with a unique (hence equivariant) convex geodesic bicombing of the strongest type. Furthermore, the Gromov boundary of is a -set in the closure of , and the latter is a metrizable absolute retract, in analogy with the Bestvina-Mess theorem on the Rips complex.
引用
收藏
页码:367 / 384
页数:18
相关论文
共 23 条
[1]  
Alexander S.B., 1990, ENSEIGN MATH, V36, P309
[2]  
[Anonymous], 1991, J._Amer._Math._ Soc
[3]  
[Anonymous], 1999, Metric Spaces of Non-Positive Curvature
[4]  
[Anonymous], 2005, IRMA LECT MATH THEOR
[5]  
Ballmann W., 1995, LECT SPAC NONP CURV
[6]  
Buyalo S., 2007, EMS Monographs in Mathematics
[7]   Discovering the algebraic structure on the metric injective envelope of a real Banach space [J].
Cianciaruso, F ;
DePascale, E .
TOPOLOGY AND ITS APPLICATIONS, 1997, 78 (03) :285-292
[9]  
Dugundj J., 1958, Compos. Math., V13, P229
[10]  
Dugundji J, 1965, FUND MATH, V57, P187, DOI [10.4064/fm-57-2-187-193, DOI 10.4064/FM-57-2-187-193]