Lifting of nearly extraordinary Galois representations

被引:1
作者
Blondeau, Julien [1 ]
机构
[1] Math Lab, UFR Sci & Tech, F-25030 Besancon, France
关键词
Galois representation; Deformation; Taylor-Ramakrishna method; Companion forms; FONTAINE-MAZUR; MOD P; CONJECTURE;
D O I
10.1016/j.jnt.2012.08.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (rho) over bar be a continuous, 2-dimensional and absolutely irreducible mod p representation of the absolute Galois group of a number field K/Q. In this work, we study the existence of lifts of (rho) over bar to GL(2)(Z(p)), for which the restrictions to the decomposition groups above p are abelian. The tools and philosophy come from the Taylor-Ramakrishna method. As an application we produce finitely ramified extensions over Q(mu(p infinity)) with Galois group SL2(Z(p)), for some p. These extensions are unramified at p. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2066 / 2082
页数:17
相关论文
共 22 条
[1]  
Bockle G., 2007, London Math. Soc. Lecture Note Ser., V320, P24
[2]  
Darmon H., 1997, ELLIPTIC CURVES MODU, P2
[3]  
FONTAINE JM, 1995, SER NUM THEORY, V1, P41
[4]   A TAMENESS CRITERION FOR GALOIS REPRESENTATIONS ASSOCIATED TO MODULAR-FORMS (MOD P) [J].
GROSS, BH .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (02) :445-517
[5]   Serre's modularity conjecture: The level one case [J].
Khare, Chandrashekhar .
DUKE MATHEMATICAL JOURNAL, 2006, 134 (03) :557-589
[6]  
Khare C, 2009, INVENT MATH, V178, P505, DOI 10.1007/s00222-009-0206-6
[7]   Serre's modularity conjecture (I) [J].
Khare, Chandrashekhar ;
Wintenberger, Jean-Pierre .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :485-504
[8]   On Serre's conjecture for 2-dimensional mod p representations of Gal((Q)over-bar/Q) [J].
Khare, Chandrashekhar ;
Wintenberger, Jean-Pierre .
ANNALS OF MATHEMATICS, 2009, 169 (01) :229-253
[9]   THE FONTAINE-MAZUR CONJECTURE FOR GL2 [J].
Kisin, Mark .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (03) :641-690
[10]  
Mazur B, 1997, MODULAR FORMS AND FERMAT'S LAST THEOREM, P243