Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

被引:8
|
作者
Neo, Darren C. J. [1 ]
Stranks, Samuel D. [2 ]
Eperon, Giles E. [2 ]
Snaith, Henry J. [2 ]
Assender, Hazel E. [1 ]
Watt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
PHOTOVOLTAICS; PBS; RECOMBINATION; NANOCRYSTALS; PASSIVATION; GENERATION; TRANSPORT; ABSORBER; SOLIDS; LAYER;
D O I
10.1063/1.4930144
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation current as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Theoretical study of multi-band solar cells with a single PbS quantum dot superlattice film as a light absorption layer
    Mukai, Kohki
    Masuda, Ibuki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2022, 61 (10)
  • [22] Core/Shell Quantum Dots Solar Cells
    Selopal, Gurpreet Singh
    Zhao, Haiguang
    Wang, Zhiming M.
    Rosei, Federico
    Advanced Functional Materials, 2020, 30 (13):
  • [23] Solar cell sensitized with colloidal type-II CdSe/CdTe core/shell quantum dot
    Zhang, J. (jyzhang@seu.edu.cn), 2013, Southeast University (43):
  • [24] Core/Shell Quantum Dots Solar Cells
    Selopal, Gurpreet Singh
    Zhao, Haiguang
    Wang, Zhiming M.
    Rosei, Federico
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (13)
  • [25] First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells
    Azpiroz, Jon M.
    Infante, Ivan
    De Angelis, Filippo
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (22): : 12739 - 12748
  • [26] Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells
    Jiao, Shuang
    Shen, Qing
    Mora-Sero, Ivan
    Wang, Jin
    Pan, Zhenxiao
    Zhao, Ke
    Kuga, Yuki
    Zhong, Xinhua
    Bisquert, Juan
    ACS NANO, 2015, 9 (01) : 908 - 915
  • [27] Wavelength and polarization selective multi-band tunnelling quantum dot detectors
    Perera, A. G. U.
    Ariyawansa, G.
    Apalkov, V. M.
    Matsik, S. G.
    Su, X. H.
    Chakrabarti, S.
    Bhattacharya, P.
    OPTO-ELECTRONICS REVIEW, 2007, 15 (04) : 223 - 228
  • [28] Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires
    Gao, Faming
    APPLIED PHYSICS LETTERS, 2011, 98 (19)
  • [29] Band and interface engineering for quantum dot solar cells
    Zhou R.
    Li X.
    Hu L.
    Zhu J.
    Zhou, Ru (zhouru@hfut.edu.cn); Hu, Liusen (huls_caep@126.com), 1600, Chinese Academy of Sciences (51): : 1429 - 1444
  • [30] New strategies for colloidal-quantum-dot-based intermediate-band solar cells
    Califano, Marco
    Skibinsky-Gitlin, Erik S.
    Gomez-Campos, Francisco M.
    Rodriguez-Bolivar, Salvador
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (15):