Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

被引:8
|
作者
Neo, Darren C. J. [1 ]
Stranks, Samuel D. [2 ]
Eperon, Giles E. [2 ]
Snaith, Henry J. [2 ]
Assender, Hazel E. [1 ]
Watt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
PHOTOVOLTAICS; PBS; RECOMBINATION; NANOCRYSTALS; PASSIVATION; GENERATION; TRANSPORT; ABSORBER; SOLIDS; LAYER;
D O I
10.1063/1.4930144
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation current as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Inverted Colloidal Quantum Dot Solar Cells
    Kim, Gi-Hwan
    Walker, Bright
    Kim, Hak-Beom
    Kim, Jin Young
    Sargent, Edward H.
    Park, Jongnam
    Kim, Jin Young
    ADVANCED MATERIALS, 2014, 26 (20) : 3321 - +
  • [2] Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells
    Neo, Darren C. J.
    Cheng, Cheng
    Stranks, Samuel D.
    Fairclough, Simon M.
    Kim, Judy S.
    Kirkland, Angus I.
    Smith, Jason M.
    Snaith, Henry J.
    Assender, Hazel E.
    Watt, Andrew A. R.
    CHEMISTRY OF MATERIALS, 2014, 26 (13) : 4004 - 4013
  • [3] Colloidal Quantum Dot Solar Cells Exploiting Hierarchical Structuring
    Labelle, Andre J.
    Thon, Susanna M.
    Masala, Silvia
    Adachi, Michael M.
    Dong, Haopeng
    Farahani, Maryam
    Ip, Alexander H.
    Fratalocchi, Andrea
    Sargent, Edward H.
    NANO LETTERS, 2015, 15 (02) : 1101 - 1108
  • [4] Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells
    Wang, Jin
    Mora-Sero, Ivan
    Pan, Zhenxiao
    Zhao, Ke
    Zhang, Hua
    Feng, Yaoyu
    Yang, Guang
    Zhong, Xinhua
    Bisquert, Juan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) : 15913 - 15922
  • [5] Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer
    Zhao, Tianshuo
    Goodwin, Earl D.
    Guo, Jiacen
    Wang, Han
    Diroll, Benjamin T.
    Murray, Christopher B.
    Kagan, Cherie R.
    ACS NANO, 2016, 10 (10) : 9267 - 9273
  • [6] Colloidal quantum dot solar cells
    Sargent, Edward H.
    NATURE PHOTONICS, 2012, 6 (03) : 133 - 135
  • [7] Detecting trap states in planar PbS colloidal quantum dot solar cells
    Jin, Zhiwen
    Wang, Aiji
    Zhou, Qing
    Wang, Yinshu
    Wang, Jizheng
    SCIENTIFIC REPORTS, 2016, 6
  • [8] Tailoring of the PbS/metal interface in colloidal quantum dot solar cells for improvements of performance and air stability
    Choi, Min-Jae
    Oh, Jihun
    Yoo, Jung-Keun
    Choi, Jaesuk
    Sim, Dong Min
    Jung, Yeon Sik
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) : 3052 - 3060
  • [9] Design of Core/Shell Colloidal Quantum Dots for MEG Solar Cells
    Tomic, Stanko
    Miloszewski, Jacek M.
    Tyrrell, Edward J.
    Binks, David J.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (01): : 179 - 184
  • [10] Colloidal quantum dot based solar cells: from materials to devices
    Song, Jung Hoon
    Jeong, Sohee
    NANO CONVERGENCE, 2017, 4