Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

被引:8
|
作者
Neo, Darren C. J. [1 ]
Stranks, Samuel D. [2 ]
Eperon, Giles E. [2 ]
Snaith, Henry J. [2 ]
Assender, Hazel E. [1 ]
Watt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
PHOTOVOLTAICS; PBS; RECOMBINATION; NANOCRYSTALS; PASSIVATION; GENERATION; TRANSPORT; ABSORBER; SOLIDS; LAYER;
D O I
10.1063/1.4930144
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation current as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Highly stable giant core/shell colloidal quantum dot sensitized solar cells
    Selopal, Gurpreet Sringh
    Zhao, Haiguang
    Tong, Xin
    Benetti, Daniele
    Pardo, Fabiola Navarro
    Zhou, Yufeng
    Barba, David
    Vidal, Francois
    Wang, Zhiming
    Rosei, Federico
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [2] Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells
    Wang, Jin
    Mora-Sero, Ivan
    Pan, Zhenxiao
    Zhao, Ke
    Zhang, Hua
    Feng, Yaoyu
    Yang, Guang
    Zhong, Xinhua
    Bisquert, Juan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) : 15913 - 15922
  • [3] Quantum Size level Structure of Colloidal CdTe Quantum Dot Nanocrystal : A Multi-band Approach
    Absor, Moh. Adhib Ulil
    Umar, Moh. Darwis
    Abrahaa, Kamsul
    INTERNATIONAL WORKSHOP ON ADVANCED MATERIAL FOR NEW AND RENEWABLE ENERGY, 2009, 1169 : 77 - 86
  • [4] Colloidal Quantum Dot Solar Cells
    Carey, Graham H.
    Abdelhady, Ahmed L.
    Ning, Zhijun
    Thon, Susanna M.
    Bakr, Osman M.
    Sargent, Edward H.
    CHEMICAL REVIEWS, 2015, 115 (23) : 12732 - 12763
  • [5] Colloidal quantum dot solar cells
    Edward H. Sargent
    Nature Photonics, 2012, 6 : 133 - 135
  • [6] Colloidal quantum dot solar cells
    Sargent, Edward H.
    NATURE PHOTONICS, 2012, 6 (03) : 133 - 135
  • [7] Colloidal quantum dot solar cells
    Emin, Saim
    Singh, Surya P.
    Han, Liyuan
    Satoh, Norifusa
    Islam, Ashraful
    SOLAR ENERGY, 2011, 85 (06) : 1264 - 1282
  • [8] Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells
    Neo, Darren C. J.
    Cheng, Cheng
    Stranks, Samuel D.
    Fairclough, Simon M.
    Kim, Judy S.
    Kirkland, Angus I.
    Smith, Jason M.
    Snaith, Henry J.
    Assender, Hazel E.
    Watt, Andrew A. R.
    CHEMISTRY OF MATERIALS, 2014, 26 (13) : 4004 - 4013
  • [9] High quantum yields generated by a multi-band quantum dot photocell
    Zhao, Shun-Cai
    Wu, Qi-Xuan
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 137
  • [10] Band engineering of ternary lead chalcogenide quantum dots for colloidal quantum dot solar cells
    Palmstrom, Axel F.
    Santra, Pralay K.
    Bent, Stacey F.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248