Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

被引:8
作者
Neo, Darren C. J. [1 ]
Stranks, Samuel D. [2 ]
Eperon, Giles E. [2 ]
Snaith, Henry J. [2 ]
Assender, Hazel E. [1 ]
Watt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
PHOTOVOLTAICS; PBS; RECOMBINATION; NANOCRYSTALS; PASSIVATION; GENERATION; TRANSPORT; ABSORBER; SOLIDS; LAYER;
D O I
10.1063/1.4930144
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation current as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 36 条
[1]   Emerging non-traditional Forster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications [J].
Algar, W. Russ ;
Kim, Hyungki ;
Medintz, Igor L. ;
Hildebrandt, Niko .
COORDINATION CHEMISTRY REVIEWS, 2014, 263 :65-85
[2]   Investigation of Cu(In,Ga)Se2 absorber by time-resolved photoluminescence for improvement of its photovoltaic performance [J].
Chantana, Jakapan ;
Hironiwa, Daisuke ;
Watanabe, Taichi ;
Teraji, Seiki ;
Kawamura, Kazunori ;
Minemoto, Takashi .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 130 :567-572
[3]   Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells [J].
Choi, Joshua J. ;
Wenger, Whitney N. ;
Hoffman, Rachel S. ;
Lim, Yee-Fun ;
Luria, Justin ;
Jasieniak, Jacek ;
Marohn, John A. ;
Hanrath, Tobias .
ADVANCED MATERIALS, 2011, 23 (28) :3144-+
[4]   8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer [J].
Cnops, Kjell ;
Rand, Barry P. ;
Cheyns, David ;
Verreet, Bregt ;
Empl, Max A. ;
Heremans, Paul .
NATURE COMMUNICATIONS, 2014, 5
[5]   Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots [J].
Ellingson, RJ ;
Beard, MC ;
Johnson, JC ;
Yu, PR ;
Micic, OI ;
Nozik, AJ ;
Shabaev, A ;
Efros, AL .
NANO LETTERS, 2005, 5 (05) :865-871
[6]   Infrared colloidal lead chalcogenide nanocrystals: Synthesis, properties, and photovoltaic applications [J].
Fu, Huiying ;
Tsang, Sai-Wing .
NANOSCALE, 2012, 4 (07) :2187-2201
[7]   Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays [J].
Gonfa, Belete Atomsa ;
Zhao, Haiguang ;
Li, Jiangtian ;
Qiu, Jingxia ;
Saidani, Menouer ;
Zhang, Shanqing ;
Izquierdo, Ricardo ;
Wu, Nianqiang ;
El Khakani, My Ali ;
Ma, Dongling .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 124 :67-74
[8]   Electrical Transport in Colloidal Quantum Dot Films [J].
Guyot-Sionnest, Philippe .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (09) :1169-1175
[9]   25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation [J].
Heeger, Alan J. .
ADVANCED MATERIALS, 2014, 26 (01) :10-28
[10]   Heteroj unction PbS Nanocrystal Solar Cells with Oxide Charge-Transport Layers [J].
Hyun, Byung-Ryool ;
Choi, Joshua J. ;
Seyler, Kyle L. ;
Hanrath, Tobias ;
Wise, Frank W. .
ACS NANO, 2013, 7 (12) :10938-10947