Semiclassical limit for nonlinear Schrodinger equations with electromagnetic fields

被引:87
作者
Cingolani, S
Secchi, S
机构
[1] Politecn Bari, Dipartimento Interuniv Matemat, I-70125 Bari, Italy
[2] SISSA, I-34014 Trieste, Italy
关键词
nonlinear Schrodinger equations; semiclassical limit; electromagnetic fields; complex-valued solutions;
D O I
10.1016/S0022-247X(02)00278-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of standing waves for a class of nonlinear Schrodinger equations in R-n, with both an electric and a magnetic field. Under suitable non-degeneracy assumptions on the critical points of an auxiliary function related to the electric field, we prove the existence and the multiplicity of complex-valued solutions in the semiclassical limit. We show that, in the semiclassical limit, the presence of a magnetic field produces a phase in the complex wave, but it does not influence the location of peaks of the modulus of these waves. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:108 / 130
页数:23
相关论文
共 24 条
[1]   Variational perturbative methods and bifurcation of bound states from the essential spectrum [J].
Ambrosetti, A ;
Badiale, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :1131-1161
[2]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[3]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[4]  
AMBROSETTI A, 1998, DISCR CONT DYN SYSTE, V4, P285
[5]  
[Anonymous], 1994, ADV STUDIES PURE MAT
[6]   NONDEGENERATE CRITICAL MANIFOLDS [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1954, 60 (02) :248-261
[8]  
Chang K. C., 1993, INFINITE DIMENSIONAL, DOI DOI 10.1007/978-1-4612-0385-8
[9]   Multiple positive solutions to nonlinear Schrodinger equations with competing potential functions [J].
Cingolani, S ;
Lazzo, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 160 (01) :118-138
[10]   Multi-peak periodic semiclassical states for a class of nonlinear Schrodinger equations [J].
Cingolani, S ;
Nolasco, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :1249-1260