On numerical approximation of the Riesz-Caputo operator with the fixed/short memory length

被引:7
作者
Blaszczyk, Tomasz [1 ]
Bekus, Krzysztof [1 ]
Szajek, Krzysztof [2 ]
Sumelka, Wojciech [2 ]
机构
[1] Czestochowa Tech Univ, Dept Math, Al Armii Krajowej 21, PL-42200 Czestochowa, Poland
[2] Poznan Univ Tech, Inst Struct Anal, Piotrowo 5 St, PL-60965 Poznan, Poland
关键词
Fractional derivatives; Numerical schemes; Caputo operator; Riesz-Caputo operator; Fixed memory length; FRACTIONAL MODEL;
D O I
10.1016/j.jksus.2020.10.017
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the Riesz-Caputo operator is studied. This type of fractional operator is a combination of the left and right Caputo derivatives. The series representation of the analyzed fractional operators with fixed memory length is presented. In the main part of the paper, three modified methods of numerical integration are applied for the approximation of the left and right Caputo, and Riesz-Caputo derivatives. Numerical schemes based on three types of interpolating functions (constant, linear and quadratic function) are presented. The in-depth numerical analysis of the presented schemes is conducted. Absolute errors and experimental rates of convergence, for the considered methods, are calculated and presented. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Generalized wave equation in nonlocal elasticity [J].
Atanackovic, T. M. ;
Stankovic, B. .
ACTA MECHANICA, 2009, 208 (1-2) :1-10
[2]   NEW NUMERICAL APPROACH FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Atangana, Abdon ;
Owolabi, Kolade M. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (01)
[3]   Numerical algorithms for approximation of fractional integral operators based on quadratic interpolation [J].
Blaszczyk, Tomasz ;
Siedlecki, Jaroslaw ;
Ciesielski, Mariusz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (09) :3345-3355
[4]   Numerical solution of composite left and right fractional Caputo derivative models for granular heat flow [J].
Blaszczyk, Tomasz ;
Leszczynski, Jacek ;
Szymanek, Ewa .
MECHANICS RESEARCH COMMUNICATIONS, 2013, 48 :42-45
[5]   The Multiple Composition of the Left and Right Fractional Riemann-Liouville Integrals - Analytical and Numerical Calculations [J].
Ciesielski, Mariusz ;
Blaszczyk, Tomasz .
FILOMAT, 2017, 31 (19) :6087-6099
[6]   The use of He's variational iteration method for solving the telegraph and fractional telegraph equations [J].
Dehghan, Mehdi ;
Yousefi, S. A. ;
Lotfi, A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (02) :219-231
[7]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[8]   A Fractional Model of Continuum Mechanics [J].
Drapaca, C. S. ;
Sivaloganathan, S. .
JOURNAL OF ELASTICITY, 2012, 107 (02) :105-123
[9]   Fractional dynamics of an erbium-doped fiber laser model [J].
Gomez-Aguilar, J. F. ;
Saad, K. M. ;
Baleanu, D. .
OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (09)
[10]   Numerical approach for solving fractional relaxation-oscillation equation [J].
Gulsu, Mustafa ;
Ozturk, Yalcin ;
Anapali, Ayse .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (08) :5927-5937