Hodge decomposition for higher order Hochschild homology

被引:96
作者
Pirashvili, T [1 ]
机构
[1] AM Razmadze Math Inst, GE-380093 Tbilisi, Georgia
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2000年 / 33卷 / 02期
关键词
D O I
10.1016/S0012-9593(00)00107-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be the category of finite pointed sets and F be a functor from Gamma to the category of vector spaces over a characteristic zero field. Loday proved that one has the natural decomposition pi(n)F(S-1) congruent to +(n)(i=0)(F), n greater than or equal to 0. We show that for any d greater than or equal to 1, there exists a similar decomposition for pi(n)F(S-d). Here Sd is a simplicial model of the d-dimensional sphere. The striking point is, that the knowledge of the decomposition for pi(n)(S-1) (respectively pi(n)F(S-2)) completely determines the decomposition of pi(n)F(S-d) for any odd (respectively even) d. These results can be applied to the cohomology of the mapping space X-Sd, where X is a d-connected space. Thus Hedge decomposition of H*(X-S1)and H*(X-S2) determines all groups H*(X-Sd), d greater than or equal to 1. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:151 / 179
页数:29
相关论文
共 31 条
[1]  
Anderson D. W., 1971, LECT NOTES MATH, V249, P1
[2]   GENERALIZATION OF EILENBERG-MOORE SPECTRAL SEQUENCE [J].
ANDERSON, DW .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (05) :784-&
[3]  
[Anonymous], 1956, HOMOLOGICAL ALGEBRA
[4]   COHOMOLOGY OF SMALL CATEGORIES [J].
BAUES, HJ ;
WIRSCHING, G .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1985, 38 (2-3) :187-211
[5]   ON THE HOMOLOGY SPECTRAL SEQUENCE OF A COSIMPLICIAL SPACE [J].
BOUSFIELD, AK .
AMERICAN JOURNAL OF MATHEMATICS, 1987, 109 (02) :361-394
[6]   EXTENSIONS OF ABELIAN SHEAVES AND EILENBERG-MACLANE ALGEBRAS [J].
BREEN, L .
INVENTIONES MATHEMATICAE, 1969, 9 (01) :15-&
[7]  
BURGHELEA D, 1988, LECT NOTES MATH, V1318, P51
[8]   ZUR HOMOTOPIETHEORIE DER KETTENKOMPLEXE [J].
DOLD, A .
MATHEMATISCHE ANNALEN, 1960, 140 (04) :278-298
[9]  
Dold Albrecht, 1961, Anwendungen, Ann. Inst. Fourier, V11, P201
[10]  
FELIX Y, 1994, EXPO MATH, V12, P305