Adiabatic divergence of the chaotic layer width and acceleration of chaotic and noise-induced transport

被引:1
|
作者
Soskin, S. M. [2 ,3 ]
Mannella, R. [1 ]
Yevtushenko, O. M. [4 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Inst Semicond Phys, UA-03028 Kiev, Ukraine
[3] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[4] Univ Munich, Dept Phys, D-80333 Munich, Germany
关键词
Adiabatic; Chaos; Transport; Noise; Diffusion; Threshold; HOMOCLINIC TANGLES; KRAMERS PROBLEM; DIFFUSION;
D O I
10.1016/j.cnsns.2008.06.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, in spatially periodic Hamiltonian systems driven by a time-periodic coordinate-independent (AC) force, the upper energy of the chaotic layer grows unlimitedly as the frequency of the force goes to zero. This remarkable effect is absent in any other physically significant systems. It gives rise to the divergence of the rite of the spatial chaotic transport. We also generalize this phenomenon for the presence of a weak noise and weak dissipation. We demonstrate for the latter case that the adiabatic AC force may greatly accelerate the spatial diffusion and the reset rate at a given threshold. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 50 条
  • [1] Divergence of the chaotic layer width and acceleration of the chaotic transport
    Soskin, SM
    Yevtushenko, OM
    Mannella, R
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2005, 800 : 237 - 242
  • [2] Divergence of the chaotic layer width and strong acceleration of the spatial chaotic transport in periodic systems driven by an adiabatic ac force
    Soskin, SM
    Yevtushenko, OM
    Mannella, R
    PHYSICAL REVIEW LETTERS, 2005, 95 (22)
  • [3] Acceleration of the chaotic and noise-induced transport in adiabatically driven spatially periodic systems
    Soskin, S. M.
    Mannella, R.
    Yevtushenko, O. M.
    Filiasi, M.
    NOISE AND FLUCTUATIONS, 2009, 1129 : 21 - +
  • [4] Noise-induced riddling in chaotic systems
    Phys Rev Lett, 25 (5047):
  • [5] Quantum noise-induced chaotic oscillations
    Bag, BC
    Ray, DS
    PHYSICAL REVIEW E, 2000, 61 (03): : 3223 - 3226
  • [6] Noise-induced riddling in chaotic systems
    Lai, YC
    Grebogi, C
    PHYSICAL REVIEW LETTERS, 1996, 77 (25) : 5047 - 5050
  • [7] The width of a chaotic layer
    Shevchenko, Ivan I.
    PHYSICS LETTERS A, 2008, 372 (06) : 808 - 816
  • [8] Noise-induced effects on the chaotic advection of fluid flow
    Baltanás, JP
    Zaikin, A
    Feudel, F
    Kurths, J
    Sanjuán, MAF
    PHYSICS LETTERS A, 2002, 297 (5-6) : 396 - 401
  • [9] Scaling laws for noise-induced superpersistent chaotic transients
    Do, Y
    Lai, YC
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [10] Noise-induced chaotic-attractor escape route
    Vipin Agarwal
    James A. Yorke
    Balakumar Balachandran
    Nonlinear Dynamics, 2020, 102 : 863 - 876