Syntheses and Electrochemical Characterization of Li-Rich Li2Mn1-xTixO3 Layered Materials Used for Lithium Ion Batteries

被引:2
作者
Xiong Li-Long [1 ,2 ]
Xiao Xiang [1 ]
Xu You-Long [1 ,2 ]
Wang Ji-Sheng [1 ]
机构
[1] Xi An Jiao Tong Univ, Minist Educ, Key Lab, Elect Mat Res Lab, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China
关键词
lithium-ion battery; cathode material; doping; cycling stability; rate performance; CATHODE MATERIALS; SPINEL LIMN2O4; LI2MNO3; PERFORMANCE; EXTRACTION; ELECTRODES; MECHANISM;
D O I
10.11862/CJIC.2017.004
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Ti-doped Li2MnO3 is synthesized by a conventional solid-state reaction. Scanning electron microscopy, X-ray diffraction and X-ray photoelectric spectroscopy analyses indicate Ti is successfully doped into Li2MnO3 structure and the doping could suppress agglomeration of primary particlesis efficiently. Electrochemical impedance spectroscopy and galvanostatic charge/discharge results show that, in the voltage window of 2.0 similar to 4.6 V (vs Li/Li+), doped sample Li2Mn0.97Ti0.03O3 delivers an initial discharge capacity of 209 mAh center dot g(-1) with 99.5% coulombic efficiency; after 40 cycles the capacity retention is 94%. Even the current density increases to 400 mA center dot g(-1), the doped sample could still deliver 120 mAh center dot g(-1) capacity, which is more than twice of that of undoped Li2MnO3 (52 mAh center dot g(-1)). Ti-doped Li2MnO3 show greatly improved cycling stability and rate performance, which is beneficial for promoting the commercial application of Li2MnO3 material.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 28 条
[1]   Improved Rate Capability in a High-Capacity Layered Cathode Material via Thermal Reduction [J].
Abouimrane, Ali ;
Compton, Owen C. ;
Deng, Haixia ;
Belharouak, Ilias ;
Dikin, Dimtriy A. ;
Nguyen, SonBinh T. ;
Amine, Khalil .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (09) :A126-A129
[2]  
Ammundsen B, 2001, ADV MATER, V13, P943, DOI 10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO
[3]  
2-J
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Structure and electrical properties of single-phase cobalt manganese oxide spinels Mn3-xCoxO4 sintered classically and by spark plasma sintering (SPS) [J].
Bordeneuve, Helene ;
Guillemet-Fritsch, Sophie ;
Rousset, Abel ;
Schuurman, Sophie ;
Poulain, Veronique .
JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (02) :396-401
[6]   Towards low-cost, high energy density Li2MnO3 cathode materials [J].
Dong, Xin ;
Xu, Youlong ;
Yan, Shen ;
Mao, Shengchun ;
Xiong, Lilong ;
Sun, Xiaofei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (02) :670-679
[7]   Electrochemical and Structural Effects of In Situ Li2O Extraction from Li2MnO3 for Li-Ion Batteries [J].
Jacob, Clement ;
Jian, Jie ;
Su, Qing ;
Verkhoturov, Stanislav ;
Guillemette, Renald ;
Wang, Haiyan .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (04) :2433-2438
[8]   Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3•(1-x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) [J].
Johnson, Christopher S. ;
Li, Naichao ;
Lefief, Christina ;
Vaughey, John T. ;
Thackeray, Michael M. .
CHEMISTRY OF MATERIALS, 2008, 20 (19) :6095-6106
[9]   Formation of Li2MnO3 investigated by in situ synchrotron probes [J].
Kan, Yongchun ;
Hu, Yuan ;
Croy, Jason ;
Ren, Yang ;
Sun, Cheng-Jun ;
Heald, Steve M. ;
Bareno, Javier ;
Bloom, Ira ;
Chen, Zonghai .
JOURNAL OF POWER SOURCES, 2014, 266 :341-346
[10]  
Kang KW, 2013, J CERAM PROCESS RES, V14, P468