A priori and a posteriori estimates of the stabilized finite element methods for the incompressible flow with slip boundary conditions arising in arteriosclerosis

被引:1
作者
Li, Jian [1 ]
Zheng, Haibiao [2 ]
Zou, Qingsong [3 ,4 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Arts & Sci, Dept Math, Xian, Shaanxi, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Pure Math & Math Practice, Sch Math Sci, Shanghai, Peoples R China
[3] Sun Yat Sen Univ, Sch Data & Computat Sci, Guangzhou, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou, Guangdong, Peoples R China
关键词
Stokes equations; Slip boundary condition; Variational inequality; Finite element methods; A priori error estimates; A posteriori error estimates; Numerical experiments; NAVIER-STOKES EQUATIONS; LOCAL GAUSS INTEGRATIONS; PRESSURE PROJECTION; ERROR ESTIMATORS; VOLUME METHODS; LEAK; APPROXIMATIONS; REGULARITY;
D O I
10.1186/s13662-019-2312-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop the lower order stabilized finite element methods for the incompressible flow with the slip boundary conditions of friction type whose weak solution satisfies a variational inequality. The H-1-norm for the velocity and the L-2-norm for the pressure decrease with optimal convergence order. The reliable and efficient a posteriori error estimates are also derived. Finally, numerical experiments are presented to validate the theoretical results.
引用
收藏
页数:20
相关论文
共 47 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   A posteriori error estimators for the Stokes and Oseen equations [J].
Ainsworth, M ;
Oden, JT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :228-245
[3]  
[Anonymous], 1987, FINITE ELEMENT METHO
[4]  
Arnold D. N., 1984, Calcolo, V21, P337, DOI 10.1007/BF02576171
[5]   ERROR ESTIMATES FOR STOKES PROBLEM WITH TRESCA FRICTION CONDITIONS [J].
Ayadi, Mekki ;
Baffico, Leonardo ;
Gdoura, Mohamed Khaled ;
Sassi, Taoufik .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (05) :1413-1429
[6]   A POSTERIORI ERROR-ESTIMATES FOR THE STOKES PROBLEM [J].
BANK, RE ;
WELFERT, BD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :591-623
[7]   On a free boundary problem for the Reynolds equation derived from the Stokes system with Tresca boundary conditions [J].
Bayada, G ;
Boukrouche, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (01) :212-231
[8]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199
[9]   Stabilization of low-order mixed finite elements for the Stokes equations [J].
Bochev, PB ;
Dohrmann, CR ;
Gunzburger, MD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :82-101
[10]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129