A static 2-approximation algorithm for vertex connectivity and incremental approximation algorithms for edge and vertex connectivity

被引:21
|
作者
Henzinger, MR
机构
[1] Digital Systems Research Center, Palo Alto, CA 94301
基金
美国国家科学基金会;
关键词
D O I
10.1006/jagm.1997.0855
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents insertions-only algorithms for maintaining the exact and/or approximate size of the minimum edge cut and the minimum vertex cut of a graph. The algorithms output the approximate or exact size k in time O(1) and a cut of size k in time linear in its size. For the minimum edge cut problem and for any 0 < epsilon less than or equal to 1, the amortized time per insertion is O(1/epsilon(2)) for a (2 + epsilon)-approximation, O((log lambda)((log n)/epsilon)(2)) for a (1 + epsilon)-approximation, and O(lambda log n) for the exact size, where n is the number of nodes in the graph and lambda is the size of the minimum cut. The (2 + epsilon)-approximation algorithm and the exact algorithm are deterministic; the (1 + epsilon)-approximation algorithm is randomized. We also present a static 2-approximation algorithm for the size kappa of the minimum vertex cut in a graph, which takes time O(n(2) min(root n, kappa)). This is a factor of kappa faster than the best kappa n(2))min(root n, kappa)). We give an insertions-only algorithm for maintaining a (2 + epsilon)-approximation of the minimum vertex cut with amortized insertion time O(n/epsilon). (C) 1997 Academic Press.
引用
收藏
页码:194 / 220
页数:27
相关论文
共 50 条
  • [1] On 2-approximation to the vertex-connectivity in graphs
    Naganiochi, H
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (01): : 12 - 16
  • [2] Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems
    Fleischer, Lisa
    Jain, Kamal
    Williamson, David P.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (05) : 838 - 867
  • [3] A 2-approximation algorithm 2-ABIS for 2-vertex- connectivity augmentation of specified vertices in a graph
    Tamura, M
    Taoka, S
    Watanabe, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (04) : 822 - 828
  • [4] A Local 2-Approximation Algorithm for the Vertex Cover Problem
    Astrand, Matti
    Floreen, Patrik
    Polishchuk, Valentin
    Rybicki, Joel
    Suomela, Jukka
    Uitto, Jara
    DISTRIBUTED COMPUTING, PROCEEDINGS, 2009, 5805 : 191 - 205
  • [5] A 4/3 Approximation for 2-Vertex-Connectivity
    Bosch-Calvo, Miguel
    Grandoni, Fabrizio
    Ameli, Afrouz Jabal
    Leibniz International Proceedings in Informatics, LIPIcs, 2023, 261
  • [6] A 2-approximation algorithm for the undirected feedback vertex set problem
    Bafna, V
    Berman, P
    Fujito, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (03) : 289 - 297
  • [7] An approximation algorithm for minimum-cost vertex-connectivity problems
    Ravi, R
    Williamson, DP
    ALGORITHMICA, 1997, 18 (01) : 21 - 43
  • [8] An approximation algorithm for minimum-cost vertex-connectivity problems
    R. Ravi
    D. P. Williamson
    Algorithmica, 1997, 18 : 21 - 43
  • [9] A 2-approximation NC algorithm for connected vertex cover and tree cover
    Fujito, T
    Doi, T
    INFORMATION PROCESSING LETTERS, 2004, 90 (02) : 59 - 63
  • [10] An iterative rounding 2-approximation algorithm for the element connectivity problem
    Fleischer, L
    Jain, K
    Williamson, DP
    42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 339 - 347