Interpolation properties of Besov spaces defined on metric spaces

被引:63
作者
Gogatishvili, Amiran [2 ]
Koskela, Pekka [3 ]
Shanmugalingam, Nageswari [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Univ Jyvaskyla, Dept Math & Stat, FIN-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Besov spaces; Sobolev spaces; real interpolation method; K-functional; metric measure space; doubling measure space; embedding theorems; POINCARE INEQUALITY; SOBOLEV FUNCTIONS; EXTENSION; SETS;
D O I
10.1002/mana.200810242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = (X, d, mu) be a doubling metric measure space. For 0 < alpha < 1, 1 <= p, q < infinity, we define semi-norms parallel to f parallel to B-p,q(alpha)(X) = (integral(infinity)(0)(integral(X) (sic)(B(x,t)) vertical bar f(x) - f(y)vertical bar(p) d mu(y) d mu(x))(q/p) dt/t(alpha q+1))(1/q). When q = infinity the usual change from integral to supremum is made in the definition. The Besov space B-p,q(alpha) (X) is the set of those functions f in L-loc(p) (X) for which the semi-norm parallel to f parallel to B-p,q(alpha) (x) is finite. We will show that if a doubling metric measure space (X, d, mu) supports a (1, p)-Poincare inequality, then the Besov space B-p,q(alpha)(X) coincides with the real interpolation space (L-p(X), K S-1,S-p(X))(alpha,q), where K S-1,S-p(X) is the Sobolev space defined by Korevaar and Schoen [15]. This results in (sharp) imbedding theorems. We further show that our definition of a Besov space is equivalent with the definition given by Bourdon and Pajot [3], and establish a trace theorem. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:215 / 231
页数:17
相关论文
共 22 条
[1]  
[Anonymous], 1971, Lecture Notes in Mathematics
[2]  
Bennett C., 1988, PURE APPL MATH, V129
[3]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[4]  
Bourdon M, 2003, J REINE ANGEW MATH, V558, P85
[5]  
Hajlasz P, 1996, POTENTIAL ANAL, V5, P403
[6]   Traces of Sobolev functions on fractal type sets and characterization of extension domains [J].
Hajlasz, P ;
Martio, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 143 (01) :221-246
[7]  
Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
[8]  
HAN Y, 2002, STUD MATH, V156, P67
[9]   A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Caratheodory Spaces [J].
Han, Yongsheng ;
Mueller, Detlef ;
Yang, Dachun .
ABSTRACT AND APPLIED ANALYSIS, 2008,
[10]   Plancherel-Polya type inequality on spaces of homogeneous type and its applications [J].
Han, YS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) :3315-3327