Multiple solutions for a class of quasilinear Schrodinger equations

被引:5
作者
Li, Quanqing [1 ]
Wang, Wenbo [2 ]
Teng, Kaimin [3 ]
Wu, Xian [4 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
[2] Yunnan Univ, Dept Math & Stat, Kunming 650091, Yunnan, Peoples R China
[3] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[4] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
基金
中国国家自然科学基金; 山西省青年科学基金;
关键词
high energy solution; perturbation approach; quasilinear Schrodinger equation; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE;
D O I
10.1002/mana.201700160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following quasilinear Schrodinger equations of theform -Delta u+V(x)u-Delta(|u|2 alpha)|u|2 alpha-2u=g(x,u),where alpha, V is an element of C(RN,R), g is an element of C(RNxR,R). Some existence results for positive solutions, negative solutions and sequence of high energy solutions are obtained via a perturbationmethod.
引用
收藏
页码:1530 / 1550
页数:21
相关论文
共 23 条
[1]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[2]  
[Anonymous], AM MATH SOC
[3]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[4]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[5]   Soliton solutions for quasilinear Schrodinger equations:: The critical exponential case [J].
do O, Jodo M. B. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (12) :3357-3372
[6]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[7]   LARGE-AMPLITUDE QUASI-SOLITONS IN SUPERFLUID FILMS [J].
KURIHARA, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (10) :3262-3267
[8]   EVOLUTION THEOREM FOR A CLASS OF PERTURBED ENVELOPE SOLITON-SOLUTIONS [J].
LAEDKE, EW ;
SPATSCHEK, KH ;
STENFLO, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2764-2769
[9]  
LITVAK AG, 1978, JETP LETT+, V27, P517
[10]   Solutions for quasilinear Schrodinger equations via the Nehari method [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) :879-901