RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure

被引:63
|
作者
Blake, Chris [1 ]
Joudaki, Shahab [1 ]
Heymans, Catherine [2 ]
Choi, Ami [2 ]
Erben, Thomas [3 ]
Harnois-Deraps, Joachim [4 ]
Hildebrandt, Hendrik [3 ]
Joachimi, Benjamin [5 ]
Nakajima, Reiko [3 ]
van Waerbeke, Ludovic [4 ]
Viola, Massimo [6 ]
机构
[1] Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia
[2] Univ Edinburgh, Scottish Univ Phys Alliance, Royal Observ, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
[3] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[4] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada
[5] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England
[6] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
基金
欧洲研究理事会; 加拿大自然科学与工程研究理事会; 加拿大创新基金会; 澳大利亚研究理事会; 美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
surveys; dark energy; large-scale structure of Universe; OSCILLATION SPECTROSCOPIC SURVEY; DARK ENERGY SURVEY; COSMOLOGICAL PARAMETER CONSTRAINTS; BARYON ACOUSTIC-OSCILLATIONS; III; APPLICATION; GROWTH-RATE; GALAXIES; CFHTLENS; SPACE; MODEL;
D O I
10.1093/mnras/stv2875
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The unknown nature of 'dark energy' motivates continued cosmological tests of large-scale gravitational physics. We present a new consistency check based on the relative amplitude of non-relativistic galaxy peculiar motions, measured via redshift-space distortion, and the relativistic deflection of light by those same galaxies traced by galaxy-galaxy lensing. We take advantage of the latest generation of deep, overlapping imaging and spectroscopic data sets, combining the Red Cluster Sequence Lensing Survey, the Canada-France-Hawaii Telescope Lensing Survey, the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. We quantify the results using the 'gravitational slip' statistic EG, which we estimate as 0.48 +/- 0.10 at z = 0.32 and 0.30 +/- 0.07 at z = 0.57, the latter constituting the highest redshift at which this quantity has been determined. These measurements are consistent with the predictions of General Relativity, for a perturbed Friedmann-Robertson-Walker metric in a Universe dominated by a cosmological constant, which are E-G = 0.41 and 0.36 at these respective redshifts. The combination of redshift-space distortion and gravitational lensing data from current and future galaxy surveys will offer increasingly stringent tests of fundamental cosmology.
引用
收藏
页码:2806 / 2828
页数:23
相关论文
共 50 条
  • [1] Angular cross-correlation of galaxies: a probe of gravitational lensing by large-scale structure
    Moessner, R
    Jain, B
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 294 (01) : L18 - L24
  • [2] Detection of weak gravitational lensing by large-scale structure
    Bacon, DJ
    Refregier, AR
    Ellis, RS
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 318 (02) : 625 - 640
  • [3] CFHTLenS and RCSLenS cross-correlation with Planck lensing detected in fourier and configuration space
    Harnois-Deraps, Joachim
    Troster, Tilman
    Hojjati, Alireza
    van Waerbeke, Ludovic
    Asgari, Marika
    Choi, Ami
    Erben, Thomas
    Heymans, Catherine
    Hildebrandt, Hendrik
    Kitching, Thomas D.
    Miller, Lance
    Nakajima, Reiko
    Viola, Massimo
    Arnouts, Stephane
    Coupon, Jean
    Moutard, Thibaud
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (01) : 434 - 457
  • [4] Galaxy-QSO correlation induced by weak gravitational lensing arising from large-scale structure
    Guimaraes, ACC
    van de Bruck, C
    Brandenberger, RH
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 325 (01) : 278 - 286
  • [5] Simulating weak lensing by large-scale structure
    Vale, C
    White, M
    ASTROPHYSICAL JOURNAL, 2003, 592 (02) : 699 - 709
  • [6] Integrated approach to cosmology: Combining CMB, large-scale structure, and weak lensing
    Nicola, Andrina
    Refregier, Alexandre
    Amara, Adam
    PHYSICAL REVIEW D, 2016, 94 (08)
  • [7] ON THE CONTRIBUTION OF LARGE-SCALE STRUCTURE TO STRONG GRAVITATIONAL LENSING
    Faure, C.
    Kneib, J. -P.
    Hilbert, S.
    Massey, R.
    Covone, G.
    Finoguenov, A.
    Leauthaud, A.
    Taylor, J. E.
    Pires, S.
    Scoville, N.
    Koekemoer, Anton M.
    ASTROPHYSICAL JOURNAL, 2009, 695 (02) : 1233 - 1243
  • [8] CFHTLenS: mapping the large-scale structure with gravitational lensing
    Van Waerbeke, L.
    Benjamin, J.
    Erben, T.
    Heymans, C.
    Hildebrandt, H.
    Hoekstra, H.
    Kitching, T. D.
    Mellier, Y.
    Miller, L.
    Coupon, J.
    Harnois-Deraps, J.
    Fu, L.
    Hudson, M.
    Kilbinger, M.
    Kuijken, K.
    Rowe, B.
    Schrabback, T.
    Semboloni, E.
    Vafaei, S.
    van Uitert, E.
    Velander, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 433 (04) : 3373 - 3388
  • [9] Planck 2013 results. XVII. Gravitational lensing by large-scale structure
    Ade, P. A. R.
    Aghanim, N.
    Armitage-Caplan, C.
    Arnaud, M.
    Ashdown, M.
    Atrio-Barandela, E.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bobin, J.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bridges, M.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Chiang, L. -Y
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    ASTRONOMY & ASTROPHYSICS, 2014, 571
  • [10] Detection of Cross-Correlation between Gravitational Lensing and γ Rays
    Ammazzalorso, S.
    Gruen, D.
    Regis, M.
    Camera, S.
    Ando, S.
    Fornengo, N.
    Bechtol, K.
    Bridle, S. L.
    Choi, A.
    Eifler, T. F.
    Gatti, M.
    MacCrann, N.
    Omori, Y.
    Samuroff, S.
    Sheldon, E.
    Troxel, M. A.
    Zuntz, J.
    Kind, M. Carrasco
    Annis, J.
    Avila, S.
    Bertin, E.
    Brooks, D.
    Burke, D. L.
    Carnero Rosell, A.
    Carretero, J.
    Castander, F. J.
    Costanzi, M.
    da Costa, L. N.
    De Vicente, J.
    Desai, S.
    Diehl, H. T.
    Dietrich, J. P.
    Doel, P.
    Everett, S.
    Flaugher, B.
    Fosalba, P.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Giannantonio, T.
    Goldstein, D. A.
    Gruendl, R. A.
    Gutierrez, G.
    Hollowood, D. L.
    Honscheid, K.
    James, D. J.
    Jarvis, M.
    Jeltema, T.
    Kent, S.
    Kuropatkin, N.
    PHYSICAL REVIEW LETTERS, 2020, 124 (10)