Brockett's stabilization condition under state constraints

被引:6
作者
Stem, RJ [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
nonlinear control system; feedback stabilization; state constraint; Brockett's condition; proximal smoothness; proximal normal cone;
D O I
10.1016/S0167-6911(02)00227-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A variant of Brockett's necessary condition for feedback stabilization is derived, in the state constrained case. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:335 / 341
页数:7
相关论文
共 23 条
[1]  
Ancona F., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P445, DOI 10.1051/cocv:1999117
[2]  
[Anonymous], GRADUATE TEXTS MATH
[3]  
[Anonymous], 1994, J MATH SYSTEMS ESTIM
[4]  
BERGER M, 1986, PERSPECTIVES NONLINE
[5]  
Brockett R.W., 1983, Differential Geometric Control Theory, P181
[6]  
CLARKE F, IN PRESS SIAM J CONT
[7]   Feedback stabilization and Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Rifford, L ;
Stern, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :25-48
[8]   Asymptotic controllability implies feedback stabilization [J].
Clarke, FH ;
Ledyaev, YS ;
Sontag, ED ;
Subbotin, AI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1394-1407
[9]   Asymptotic stability and smooth Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Stern, RJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (01) :69-114
[10]  
CLARKE FH, 1995, J CONVEX ANAL, V2, P117