A Dixmier-Douady theory for strongly self-absorbing C*-algebras II: the Brauer group

被引:8
作者
Dadarlat, Marius [1 ]
Pennig, Ulrich [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Munster, Inst Math, D-48149 Munster, Germany
基金
美国国家科学基金会;
关键词
Strongly self-absorbing; C*-algebras; Dixmier-Douady class; Brauer group; torsion; opposite algebra; CLASSIFICATION; RANK;
D O I
10.4171/JNCG/218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We have previously shown that the isomorphism classes of orientable locally trivial fields of C*-algebras over a compact metrizable space X with fiber D circle times K, where D is a strongly self-absorbing C*-algebra, forman abelian group under the operation of tensor product. Moreover this group is isomorphic to the first group (E) over bar (1)(D)(X) of the (reduced) generalized cohomology theory associated to the unit spectrum of topological K-theory with coefficients in D. Here we show that all the torsion elements of the group (E) over bar (1)(D)(X) arise from locally trivial fields with fiber D circle times M-n (C), n >= 1, for all known examples of strongly self-absorbing C*-algebras D. Moreover the Brauer group generated by locally trivial fields with fiber D circle times M-n (C), n >= 1 is isomorphic to Tor((E) over bar (1)(D)(X)).
引用
收藏
页码:1137 / 1154
页数:18
相关论文
共 20 条
[1]  
Atiyah M., 2004, Ukr. Mat. Visn., V1, P287
[2]  
Boersema JL, 2011, DOC MATH, V16, P619
[3]   STABLE ISOMORPHISM OF HEREDITARY SUBALGEBRAS OF CSTAR-ALGEBRAS [J].
BROWN, LG .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (02) :335-348
[4]   A Dixmier-Douady theory for strongly self-absorbing C*- algebras [J].
Dadarlat, Marius ;
Pennig, Ulrich .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 718 :153-181
[5]   Unit spectra of K-theory from strongly self-absorbing C*-algebras [J].
Dadarlat, Marius ;
Pennig, Ulrich .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (01) :137-168
[6]  
Dadarlat M, 2009, MATH SCAND, V104, P95
[7]  
Dixmier J., 1963, B SOC MATH FRANCE, V91, P227, DOI DOI 10.24033/BSMF.1596
[8]  
Grothendieck A., 1964, SEMINAIRE BOURBAKI, P199
[9]  
Hirshberg I, 2007, MATH ANN, V339, P695, DOI 10.1007/s00208-007-0129-8
[10]  
Jiang XH, 1999, AM J MATH, V121, P359