A priori estimates for quasilinear degenerate parabolic equations

被引:4
作者
Manfredini, M [1 ]
Pascucci, A [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
关键词
D O I
10.1090/S0002-9939-02-06922-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some maximum and gradient estimates for classical solutions to a wide class of quasilinear degenerate parabolic equations, including first order ones. The proof is elementary and exploits the smallness of the domain in the time direction.
引用
收藏
页码:1115 / 1120
页数:6
相关论文
共 15 条
[1]  
[Anonymous], ELLIPTIC PARTIAL DIF
[2]  
ANTONELLI F, IN PRESS J DIFFERENT
[3]  
Barles G., 1991, DIFFERENTIAL INTEGRA, V4, P241
[4]  
Bernstein S, 1906, MATH ANN, V62, P253, DOI 10.1007/BF01449980
[5]   Regularity properties of viscosity solutions of a non-Hormander degenerate equation [J].
Citti, G ;
Pascucci, A ;
Polidoro, S .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (09) :901-918
[6]  
CITTI G, IN PRESS COMMUN APPL
[7]   ENTROPY SOLUTIONS FOR DIFFUSION-CONVECTION EQUATIONS WITH PARTIAL DIFFUSIVITY [J].
ESCOBEDO, M ;
VAZQUEZ, JL ;
ZUAZUA, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 343 (02) :829-842
[8]   NON-PARAMETRIC MEAN-CURVATURE EVOLUTION WITH BOUNDARY-CONDITIONS [J].
HUISKEN, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 77 (02) :369-378
[9]  
IVANOV AV, 1984, P STEKL I MATH, V160
[10]  
Ladyzenskaja O. A., 1962, AM MATH SOC TRANSL 2, V26, p[5, 217]