Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations

被引:46
作者
Bonahon, Francis [1 ]
Wong, Helen [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Carleton Coll, Dept Math, Northfield, MN 55057 USA
基金
美国国家科学基金会;
关键词
QUANTIZATION; SPACES; MODULES;
D O I
10.1007/s00222-015-0611-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study finite-dimensional representations of the Kauffman bracket skein algebra of a surface S. In particular, we construct invariants of such irreducible representations when the underlying parameter is a root of unity. The main one of these invariants is a point in the character variety consisting of group homomorphisms from the fundamental group to , or in a twisted version of this character variety. The proof relies on certain miraculous cancellations that occur for the quantum trace homomorphism constructed by the authors. These miraculous cancellations also play a fundamental role in subsequent work of the authors, where novel examples of representations of the skein algebra are constructed.
引用
收藏
页码:195 / 243
页数:49
相关论文
共 35 条
[1]  
[Anonymous], 1994, ERGEBNISSE DER MATHE, DOI DOI 10.1007/978-3-642-57916-5.MR1304906
[2]   Skein spaces and spin structures [J].
Barrett, JW .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 :267-275
[3]   Topological quantum field theories derived from the Kauffman bracket [J].
Blanchet, C ;
Habegger, N ;
Masbaum, G ;
Vogel, P .
TOPOLOGY, 1995, 34 (04) :883-927
[4]  
Bonahon F., ARXIV150501522
[5]  
Bonahon F., ARXIV13090921
[6]  
Bonahon F., ARXIV12061639
[7]   Representations of the quantum Teichmuller space and invariants of surface diffeomorphisms [J].
Bonahon, Francis ;
Liu, Xiaobo .
GEOMETRY & TOPOLOGY, 2007, 11 :889-937
[8]  
Bonahon F, 2011, CONTEMP MATH, V560, P179
[9]   Quantum traces for representations of surface groups in SL2(C) [J].
Bonahon, Francis ;
Wong, Helen .
GEOMETRY & TOPOLOGY, 2011, 15 (03) :1569-1615
[10]   Rings of SL2(C)-characters and the Kauffman bracket skein module [J].
Bullock, D .
COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (04) :521-542