Challenges for plasma-facing components in nuclear fusion

被引:222
作者
Linke, Jochen [1 ,2 ]
Du, Juan [1 ,2 ]
Loewenhoff, Thorsten [1 ,2 ]
Pintsuk, Gerald [1 ,2 ]
Spilker, Benjamin [1 ,2 ]
Steudel, Isabel [1 ,2 ]
Wirtz, Marius [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Energie & Klimaforsch, D-52425 Julich, Germany
[2] Vogelsang 48, D-52066 Aachen, Germany
关键词
HEAT LOADS; TUNGSTEN; TRANSIENT; PERFORMANCE; BERYLLIUM; DIVERTOR; DEGRADATION; BEHAVIOR; DEVICES; DESIGN;
D O I
10.1063/1.5090100
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interaction processes between the burning plasma and the first wall in a fusion reactor are diverse: the first wall will be exposed to extreme thermal loads of up to several tens of megawatts per square meter during quasistationary operation, combined with repeated intense thermal shocks (with energy densities of up to several megajoules per square meter and pulse durations on a millisecond time scale). In addition to these thermal loads, the wall will be subjected to bombardment by plasma ions and neutral particles (D, T, and He) and by energetic neutrons with energies up to 14 MeV. Hopefully, ITER will not only demonstrate that thermonuclear fusion of deuterium and tritium is feasible in magnetic confinement regimes; it will also act as a first test device for plasma-facing materials (PFMs) and plasma-facing components (PFCs) under realistic synergistic loading scenarios that cover all the above-mentioned load types. In the absence of an integrated test device, material tests are being performed primarily in specialized facilities that concentrate only on the most essential material properties. New multipurpose test facilities are now available that can also focus on more complex loading scenarios and thus help to minimize the risk of an unexpected material or component failure. Thermonuclear fusion-both with magnetic and with inertial confinement-is making great progress, and the goal of scientific break-even will be reached soon. However, to achieve that end, significant technical problems, particularly in the field of high-temperature and radiation-resistant materials, must be solved. With ITER, the first nuclear reactor that burns a deuterium-tritium plasma with a fusion power gain Q >= 10 will start operation in the next decade. To guarantee safe operation of this rather sophisticated fusion device, new PFMs and PFCs that are qualified to withstand the harsh environments in such a tokamak reactor have been developed and are now entering the manufacturing stage. (C) 2019 Author(s).
引用
收藏
页数:18
相关论文
共 69 条
[1]   THE HFR PETTEN AS A TEST-BED FOR FUSION MATERIALS AND COMPONENTS [J].
AHLF, J ;
CONRAD, R ;
TARTAGLIA, GP ;
TSOTRIDIS, G .
JOURNAL OF NUCLEAR MATERIALS, 1994, 212 (pt B) :1635-1639
[2]  
[Anonymous], 2016, Nucl. Mater. Energy., DOI [DOI 10.1016/J.NME, 10.1016/J.NME.2016.07.003, DOI 10.1016/J.NME.2016.07.003]
[3]   Armour materials for the ITER plasma facing components [J].
Barabash, V ;
Federici, G ;
Matera, R ;
Raffray, AR .
PHYSICA SCRIPTA, 1999, T81 :74-83
[4]   Materials for DEMO and reactor applications-boundary conditions and new concepts [J].
Coenen, J. W. ;
Antusch, S. ;
Aumann, M. ;
Biel, W. ;
Du, J. ;
Engels, J. ;
Heuer, S. ;
Houben, A. ;
Hoeschen, T. ;
Jasper, B. ;
Koch, F. ;
Linke, J. ;
Litnovsky, A. ;
Mao, Y. ;
Neu, R. ;
Pintsuk, G. ;
Riesch, J. ;
Rasinski, M. ;
Reiser, J. ;
Rieth, M. ;
Terra, A. ;
Unterberg, B. ;
Weber, Th ;
Wegener, T. ;
You, J-H ;
Linsmeier, Ch .
PHYSICA SCRIPTA, 2016, T167
[5]   Reduction of preferential erosion of carbon fibre composites under intense transient heat pulses [J].
Compan, J. ;
Renk, T. J. ;
Hirai, T. ;
Linke, J. .
PHYSICA SCRIPTA, 2007, T128 :246-249
[6]   The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets [J].
De Temmerman, G. ;
Hirai, T. ;
Pitts, R. A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (04)
[7]   Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads [J].
De Temmerman, G. ;
Morgan, T. W. ;
van Eden, G. G. ;
de Kruif, T. ;
Wirtz, M. ;
Matejicek, J. ;
Chraska, T. ;
Pitts, R. A. ;
Wright, G. M. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :198-201
[8]   High heat flux capabilities of the Magnum-PSI linear plasma device [J].
De Temmerman, G. ;
van den Berg, M. A. ;
Scholten, J. ;
Lof, A. ;
van der Meiden, H. J. ;
van Eck, H. J. N. ;
Morgan, T. W. ;
de Kruijf, T. M. ;
van Emmichoven, P. A. Zeijlmans ;
Zielinski, J. J. .
FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) :483-487
[9]   Retention in tungsten resulting from extremely high fluence plasma exposure [J].
Doerner, R. P. ;
Baldwin, M. J. ;
Lynch, T. C. ;
Yu, J. H. .
NUCLEAR MATERIALS AND ENERGY, 2016, 9 :89-92
[10]  
Duwe R., 1994, FUSION TECHNOL, V1995, P355, DOI DOI 10.1016/B978-0-444-82220-8.50057-1