A strategy for proline and glycine mutations to proteins with alchemical free energy calculations

被引:16
作者
Hayes, Ryan L. [1 ]
Brooks, Charles L., III [1 ,2 ]
机构
[1] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Biophys Program, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
enhanced sampling; free energy methodology; multisite lambda dynamics; BINDING FREE-ENERGY; SINGLE-POINT MUTATIONS; MOLECULAR-DYNAMICS; RELIABLE PREDICTION; LAMBDA-DYNAMICS; DRUG DISCOVERY; ALPHA-HELIX; STABILITY; ACCURATE; CHARMM;
D O I
10.1002/jcc.26525
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Computation of the thermodynamic consequences of protein mutations holds great promise in protein biophysics and design. Alchemical free energy methods can give improved estimates of mutational free energies, and are already widely used in calculations of relative and absolute binding free energies in small molecule design problems. In principle, alchemical methods can address any amino acid mutation with an appropriate alchemical pathway, but identifying a strategy that produces such a path for proline and glycine mutations is an ongoing challenge. Most current strategies perturb only side chain atoms, while proline and glycine mutations also alter the backbone parameters and backbone ring topology. Some strategies also perturb backbone parameters and enable glycine mutations. This work presents a strategy that enables both proline and glycine mutations and comprises two key elements: a dual backbone with restraints and scaling of bonded terms, facilitating backbone parameter changes, and a soft bond in the proline ring, enabling ring topology changes in proline mutations. These elements also have utility for core hopping and macrocycle studies in computer-aided drug design. This new strategy shows slight improvements over an alternative side chain perturbation strategy for a set T4 lysozyme mutations lacking proline and glycine, and yields good agreement with experiment for a set of T4 lysozyme proline and glycine mutations not previously studied. To our knowledge this is the first report comparing alchemical predictions of proline mutations with experiment. With this strategy in hand, alchemical methods now have access to the full palette of amino acid mutations.
引用
收藏
页码:1088 / 1094
页数:7
相关论文
共 56 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Lessons from the lysozyme of phage T4 [J].
Baase, Walter A. ;
Liu, Lijun ;
Tronrud, Dale E. ;
Matthews, Brian W. .
PROTEIN SCIENCE, 2010, 19 (04) :631-641
[3]   Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation [J].
Barlow, Kyle A. ;
Conchuir, Shane O. ;
Thompson, Samuel ;
Suresh, Pooja ;
Lucas, James E. ;
Heinonen, Markus ;
Kortemme, Tanja .
JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (21) :5389-5399
[4]   Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles [J].
Best, Robert B. ;
Zhu, Xiao ;
Shim, Jihyun ;
Lopes, Pedro E. M. ;
Mittal, Jeetain ;
Feig, Michael ;
MacKerell, Alexander D., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) :3257-3273
[5]   Inclusion of Many-Body Effects in the Additive CHARMM Protein CMAP Potential Results in Enhanced Cooperativity of α-Helix and β-Hairpin Formation [J].
Best, Robert B. ;
Mittal, Jeetain ;
Feig, Michael ;
MacKerell, Alexander D., Jr. .
BIOPHYSICAL JOURNAL, 2012, 103 (05) :1045-1051
[6]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]   Free Energy Perturbation Calculation of Relative Binding Free Energy between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of HIV-1 [J].
Clark, Anthony J. ;
Gindin, Tatyana ;
Zhang, Baoshan ;
Wang, Lingle ;
Abel, Robert ;
Murret, Colleen S. ;
Xu, Fang ;
Bao, Amy ;
Lu, Nina J. ;
Zhou, Tongqing ;
Kwong, Peter D. ;
Shapiro, Lawrence ;
Honig, Barry ;
Friesner, Richard A. .
JOURNAL OF MOLECULAR BIOLOGY, 2017, 429 (07) :930-947
[9]   Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations [J].
Cournia, Zoe ;
Allen, Bryce ;
Sherman, Woody .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (12) :2911-2937
[10]   A large scale test of computational protein design: Folding and stability of nine completely redesigned globular proteins [J].
Dantas, G ;
Kuhlman, B ;
Callender, D ;
Wong, M ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 332 (02) :449-460