Quasi-Direct Optical Transitions in Silicon Nanocrystals with Intensity Exceeding the Bulk

被引:55
作者
Lee, Benjamin G. [1 ]
Luo, Jun-Wei [2 ,3 ]
Neale, Nathan R. [1 ]
Beard, Matthew C. [1 ]
Hiller, Daniel [4 ]
Zacharias, Margit [4 ]
Stradins, Paul [1 ]
Zunger, Alex [5 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[4] Univ Freiburg, IMTEK, Lab Nanotechnol, D-79110 Freiburg, Germany
[5] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Silicon nanocrystals; quantum dots; optical absorption; absorption cross section; atomistic screened pseudopotential; SI NANOCRYSTALS; QUANTUM DOTS; LIGHT; ABSORPTION; EMISSION; PHOTOLUMINESCENCE; PHOTONICS; GAP;
D O I
10.1021/acs.nanolett.5b04256
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Comparison of the measured absolute absorption cross section on a per Si atom basis of plasma-synthesized Si nanocrystals (NCs) with the absorption of bulk crystalline Si shows that while near the band edge the NC absorption is weaker than the bulk, yet above similar to 2.2 eV the NC absorbs up to 5 times more than the bulk. Using atomistic screened pseudopotential calculations we show that this enhancement arises from interface-induced scattering that enhances the quasi-direct, zero-phonon transitions by mixing direct F-like wave function character into the indirect X-like conduction band states, as well as from space confinement that broadens the distribution of wave functions in k-space. The absorption enhancement factor increases exponentially with decreasing NC size and is correlated with the exponentially increasing direct F-like wave function character mixed into the NC conduction states. This observation and its theoretical understanding could lead to engineering of Si and other indirect band gap NC materials for optical and optoelectronic applications.
引用
收藏
页码:1583 / 1589
页数:7
相关论文
共 37 条
[1]  
[Anonymous], 1984, COURSE THEORETICAL P
[2]   Photoluminescence quantum yields of amorphous and crystalline silicon nanoparticles [J].
Anthony, Rebecca ;
Kortshagen, Uwe .
PHYSICAL REVIEW B, 2009, 80 (11)
[3]   SILICON PHOTONICS Energy-efficient communication [J].
Asghari, Mehdi ;
Krishnamoorthy, Ashok V. .
NATURE PHOTONICS, 2011, 5 (05) :268-270
[4]   Myths and rumours of silicon photonics [J].
Baehr-Jones, Tom ;
Pinguet, Thierry ;
Lo Guo-Qiang, Patrick ;
Danziger, Steven ;
Prather, Dennis ;
Hochberg, Michael .
NATURE PHOTONICS, 2012, 6 (04) :206-208
[5]  
Belyakov V. A., 2008, Advances in Optical Technologies, V2008, DOI 10.1155/2008/279502
[6]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[7]   Genetic-Algorithm Discovery of a Direct-Gap and Optically Allowed Superstructure from Indirect-Gap Si and Ge Semiconductors [J].
d'Avezac, Mayeul ;
Luo, Jun-Wei ;
Chanier, Thomas ;
Zunger, Alex .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[8]   QUANTUM CONFINEMENT IN SI NANOCRYSTALS [J].
DELLEY, B ;
STEIGMEIER, EF .
PHYSICAL REVIEW B, 1993, 47 (03) :1397-1400
[9]   Silicon quantum dots: surface matters [J].
Dohnalova, K. ;
Gregorkiewicz, T. ;
Kusova, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (17)
[10]   Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission [J].
Dohnalova, Katerina ;
Poddubny, Alexander N. ;
Prokofiev, Alexei A. ;
de Boer, Wieteke D. A. M. ;
Umesh, Chinnaswamy P. ;
Paulusse, Jos M. J. ;
Zuilhof, Han ;
Gregorkiewicz, Tom .
LIGHT-SCIENCE & APPLICATIONS, 2013, 2 :e47-e47