Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries

被引:145
作者
Hao, Zhendong [1 ]
Zhao, Qing [1 ]
Tang, Jiadong [1 ]
Zhang, Qianqian [1 ]
Liu, Jingbing [1 ]
Jin, Yuhong [1 ]
Wang, Hao [1 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Minist Educ, Key Lab New Funct Mat, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLID-ELECTROLYTE INTERPHASE; METAL ANODE; ION BATTERIES; IN-SITU; PERMSELECTIVE SEPARATOR; NONPOROUS SEPARATOR; LI-ION; SULFUR; GROWTH; PERFORMANCE;
D O I
10.1039/d0mh01167c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal battery (LMB) is considered to be one of the most promising electrochemical energy storage devices due to the high theoretical specific capacity and the lowest redox potential of metallic lithium; however, some key issues caused by lithium dendrites on the lithium metal anode seriously hinder its real-world applications. As an indispensable part of LMBs, the separator could serve as a physical barrier to prevent direct contact of the two electrodes and control ionic transport in batteries; it is an ideal platform for the suppression of lithium dendrites. In this review, the mechanism of lithium dendrite nucleation and growth are firstly discussed and then some advanced techniques are introduced for the precise characterization of lithium dendrites. On the basis of dendritic nucleation and growth principle, several feasible strategies are summarized for suppressing lithium dendrites by utilizing functional separators, including providing a mechanical barrier, promoting homogeneous lithium deposition, and regulating ionic transport. Finally, some challenges and prospects are proposed to clear the future development of functional separators. We anticipate that this paper will provide a new insight into the design and construction of functional separators for addressing the issues of lithium dendrites in high-energy batteries.
引用
收藏
页码:12 / 32
页数:22
相关论文
共 126 条
[21]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[22]   Experimental Validation of the Elimination of Dendrite Short-Circuit Failure in Secondary Lithium-Metal Convection Cell Batteries [J].
Dornbusch, Donald A. ;
Hilton, Ramsey ;
Lohman, Samuel D. ;
Suppes, Galen J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (03) :A262-A268
[23]   Stable artificial solid electrolyte interphase films for lithium metal anode via metal-organic frameworks cemented by polyvinyl alcohol [J].
Fan, Lishuang ;
Guo, Zhikun ;
Zhang, Yu ;
Wu, Xian ;
Zhao, Chenyang ;
Sun, Xun ;
Yang, Guiye ;
Feng, Yujie ;
Zhang, Naiqing .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (01) :251-258
[24]   Nickel ferrite-graphene heteroarchitectures: Toward high-performance anode materials for lithium-ion batteries [J].
Fu, Yongsheng ;
Wan, Yunhai ;
Xia, Hui ;
Wang, Xin .
JOURNAL OF POWER SOURCES, 2012, 213 :338-342
[25]   Nonwoven rGO Fiber-Aramid Separator for High-Speed Charging and Discharging of Li Metal Anode [J].
Gong, Yong Jun ;
Heo, Jung Woon ;
Lee, Hakji ;
Kim, Hyunjin ;
Cho, Jinil ;
Pyo, Seonmi ;
Yun, Heejun ;
Kim, Heebae ;
Park, Sang Yoon ;
Yoo, Jeeyoung ;
Kim, Youn Sang .
ADVANCED ENERGY MATERIALS, 2020, 10 (27)
[26]   Draining Over Blocking: Nano-Composite Janus Separators for Mitigating Internal Shorting of Lithium Batteries [J].
Gonzalez, Matthew S. ;
Yan, Qizhang ;
Holoubek, John ;
Wu, Zhaohui ;
Zhou, Hongyao ;
Patterson, Nicholas ;
Petrova, Victoria ;
Liu, Haodong ;
Liu, Ping .
ADVANCED MATERIALS, 2020, 32 (12)
[27]   Research Progress on Surface Coating Layers on the Positive Electrode for Lithium Ion Batteries [J].
Hao, Zhen Dong ;
Xu, Xiaolong ;
Wang, Hao ;
Liu, Jingbing ;
Yan, Hui .
NANO, 2018, 13 (11)
[28]   Nanochannels regulating ionic transport for boosting electrochemical energy storage and conversion: a review [J].
Hao, Zhendong ;
Zhang, Qianqian ;
Xu, Xiaolong ;
Zhao, Qing ;
Wu, Congrong ;
Liu, Jingbing ;
Wang, Hao .
NANOSCALE, 2020, 12 (30) :15923-15943
[29]   A sandwich-structured separator based on in situ coated polyaniline on polypropylene membrane for improving the electrolyte wettability in lithium-ion batteries [J].
Hao, ZhenDong ;
Wu, CongRong ;
Zhang, QianQian ;
Liu, JingBing ;
Wang, Hao .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (14) :8049-8056
[30]   In situ growth of Co3O4 coating layer derived from MOFs on LiNi0.8Co0.15Al0.05O2 cathode materials [J].
Hao, ZhenDong ;
Xu, XiaoLong ;
Deng, SiXu ;
Wang, Hao ;
Liu, JingBing ;
Yan, Hui .
IONICS, 2019, 25 (06) :2469-2476