Size measurement of nanoparticles using the emission intensity distribution of laser-induced plasma

被引:10
|
作者
Jung, E. C.
Yun, J. -I.
Kim, J. I.
Park, Y. J.
Park, K. K.
Fanghaenel, T.
Kim, W. H.
机构
[1] Korea Atom Energy Res Inst, Nucl Chem Res Div, Taejon 305600, South Korea
[2] Forschungszentrum Karlsruhe, Inst Nukl Entsorgung, D-76021 Karlsruhe, Germany
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2006年 / 85卷 / 04期
关键词
D O I
10.1007/s00340-006-2307-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A two-dimensional optical imaging method is presented for monitoring the laser-induced breakdown events of aqueous nanoparticles. The method is based on measuring the light intensity distribution of plasma from spatially resolved breakdown events. The number of laser breakdown events as a function of the emission intensity follows the Gaussian distribution and its full-width at a half-maximum appears in direct correlation with the particle size. Hence the particle size can be determined by measuring the plasma emission intensity distribution. Calibration of the method is carried out with reference polystyrene particles dispersed in water. Application is demonstrated for measuring bentonite colloidal particles of different sizes in groundwater.
引用
收藏
页码:625 / 629
页数:5
相关论文
共 50 条
  • [1] Size measurement of nanoparticles using the emission intensity distribution of laser-induced plasma
    E.C. Jung
    J.-I. Yun
    J.I. Kim
    Y.J. Park
    K.K. Park
    T. Fanghänel
    W.H. Kim
    Applied Physics B, 2006, 85 : 625 - 629
  • [2] Measurement of bimodal size distribution of nanoparticles by using the spatial distribution of laser-induced plasma
    E.C. Jung
    J.-I. Yun
    J.I. Kim
    M. Bouby
    H. Geckeis
    Y.J. Park
    K.K. Park
    T. Fanghänel
    W.H. Kim
    Applied Physics B, 2007, 87 : 497 - 502
  • [3] Measurement of bimodal size distribution of nanoparticles by using the spatial distribution of laser-induced plasma
    Jung, E. C.
    Yun, J.-I.
    Kim, J. I.
    Bouby, M.
    Geckeis, H.
    Park, Y. J.
    Park, K. K.
    Fanghaenel, T.
    Kim, W. H.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 87 (03): : 497 - 502
  • [4] Determining the spatial distribution of laser-induced plasma by laser-induced voltaic measurement
    Miao, Xinyang
    Qin, Qingdong
    Liu, Zhi
    Zhang, Shanzhe
    Zhan, Honglei
    Zhao, Kun
    LASER PHYSICS LETTERS, 2021, 18 (09)
  • [5] Measurement of the electrical size of a laser-induced plasma in a uniform field
    Robledo-Martinez, A
    Sobral, H
    Villagrán-Muniz, M
    APPLIED SURFACE SCIENCE, 2005, 248 (1-4) : 32 - 35
  • [6] Temperature dependence of emission intensity in femtosecond laser-induced Ge plasma
    Wang, Xiaowei
    Chen, Anmin
    Sui, Laizhi
    Wang, Ying
    Zhang, Dan
    Li, Suyu
    Jiang, Yuanfei
    Jin, Mingxing
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2018, 33 (02) : 168 - 174
  • [7] Statistical Distribution of Laser-induced Growth of Nanoparticles: Effects of Laser Intensity and Medium-Nanoparticles Interactions
    Kim, Ji-Hyun
    Yang, Gil-Suk
    Song, Sanggeun
    Sung, Jaeyoung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2015, 36 (03) : 914 - 918
  • [8] STUDY OF LASER-INDUCED PLASMA AT LOW LASER INTENSITY
    WAGAL, SS
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1982, 10 (03) : 211 - 213
  • [9] Laser-induced atomic emission of silicon nanoparticles during laser-induced heating
    Menser, Jan
    Daun, Kyle
    Dreier, Thomas
    Schulz, Christof
    APPLIED OPTICS, 2017, 56 (11) : E50 - E57
  • [10] Evaluation of laser-induced plasma distribution
    Li, Haoyu
    Yang, Feng
    Cai, He
    Guo, Jiawei
    Zhou, Qiang
    Yang, Jiao
    Wang, Hongyuan
    An, Guofei
    Zhang, Ying
    Ma, Chaoqun
    Luo, Qing
    Wang, You
    AOPC 2021: ADVANCED LASER TECHNOLOGY AND APPLICATIONS, 2021, 12060