56 Gb/s Germanium Waveguide Electro-Absorption Modulator

被引:132
作者
Srinivasan, Srinivasan Ashwyn [1 ,2 ,3 ]
Pantouvaki, Marianna [1 ]
Gupta, Shashank [5 ]
Chen, Hong Tao [1 ,2 ,3 ]
Verheyen, Peter [1 ]
Lepage, Guy [1 ]
Roelkens, Gunther [3 ,4 ]
Saraswat, Krishna [5 ]
Van Thourhout, Dries [3 ,4 ]
Absil, Philippe [1 ]
Van Campenhout, Joris [1 ]
机构
[1] Interuniv Microelect Ctr, Silicon Photon Grp, B-3001 Leuven, Belgium
[2] Univ Ghent, Dept Informat Technol, Photon Res Grp, IMEC, B-9000 Ghent, Belgium
[3] Univ Ghent, Ctr Nano & Biophoton, B-9000 Ghent, Belgium
[4] Univ Ghent, Dept Informat Technol, Photon Res Grp, IMEC, B-9000 Ghent, Belgium
[5] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
Electro-absorption modulators; optoelectronics; optical interconnects; waveguide modulators;
D O I
10.1109/JLT.2015.2478601
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a Germanium waveguide electro-absorption modulator with electro-optic bandwidth substantially beyond 50 GHz. The device is implemented in a fully integrated Si photonics platform on 200 mm silicon-on-insulator wafers with 220 nm top Si thickness. Wide open eye diagrams are demonstrated at 1610 nm operation wavelength for nonreturn-to-zero on-off keying (NRZ-OOK) modulation at data rates as high as 56 Gb/s. Dynamic extinction ratios up to 3.3 dB are obtained by applying drive voltages of 2V peak-to-peak, along with an optical insertion loss below 5.5 dB. The device has a low junction capacitance of just 12.8 fF, resulting in 12.8 fJ/bit of dynamic and similar to 1.2 mW of static power consumption in typical operating conditions. Wafer-scale performance data are presented and confirm the manufacturability of the device. The demonstrated modulator shows great potential for realizing high-density and low-power silicon photonic transceivers targeting short-reach optical interconnects at serial data rates of 56 Gb/s and beyond.
引用
收藏
页码:419 / 424
页数:6
相关论文
共 25 条
  • [1] Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O's
    Absil, Philippe P.
    Verheyen, Peter
    De Heyn, Peter
    Pantouvaki, Marianna
    Lepage, Guy
    De Coster, Jeroen
    Van Campenhout, Joris
    [J]. OPTICS EXPRESS, 2015, 23 (07): : 9369 - 9378
  • [2] [Anonymous], 2015, PROC IEEE INT SOLID
  • [3] Baehr-Jones Tom, 2012, ARXIV12030767V1
  • [4] Integrated germanium optical interconnects on silicon substrates
    Chaisakul, Papichaya
    Marris-Morini, Delphine
    Frigerio, Jacopo
    Chrastina, Daniel
    Rouifed, Mohamed-Said
    Cecchi, Stefano
    Crozat, Paul
    Isella, Giovanni
    Vivien, Laurent
    [J]. NATURE PHOTONICS, 2014, 8 (06) : 482 - 488
  • [5] Fabrication-Tolerant Four-Channel Wavelength-Division-Multiplexing Filter Based on Collectively Tuned Si Microrings
    De Heyn, Peter
    De Coster, Jeroen
    Verheyen, Peter
    Lepage, Guy
    Pantouvaki, Marianna
    Absil, Philippe
    Bogaerts, Wim
    Van Campenhout, Joris
    Van Thourhout, Dries
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (16) : 2785 - 2792
  • [6] Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current
    DeRose, Christopher T.
    Trotter, Douglas C.
    Zortman, William A.
    Starbuck, Andrew L.
    Fisher, Moz
    Watts, Michael R.
    Davids, Paul S.
    [J]. OPTICS EXPRESS, 2011, 19 (25): : 24897 - 24904
  • [7] Feng D., 2013, IEEE J. Sel. Top. Quantum Electron, V19, P64, DOI DOI 10.1109/JSTQE.2013.2278881
  • [8] Georgescu M., 2014, P NATL ACAD SCI USA, P1
  • [9] Demonstration of a High Extinction Ratio Monolithic CMOS Integrated Nanophotonic Transmitter and 16 Gb/s Optical Link
    Gill, Douglas M.
    Proesel, Jonathan E.
    Xiong, Chi
    Orcutt, Jason S.
    Rosenberg, Jessie C.
    Khater, Marwan H.
    Barwicz, Tymon
    Assefa, Solomon
    Shank, Steven M.
    Reinholm, Carol
    Ellis-Monaghan, John
    Kiewra, Edward
    Kamlapurkar, Swetha
    Breslin, Chris M.
    Green, William M. J.
    Haensch, Wilfried
    Vlasov, Yurii A.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (04) : 212 - 222
  • [10] Gupta S., 2015, OPT FIB COMM C