POSITIVE HOMOCLINIC SOLUTIONS FOR THE DISCRETE p-LAPLACIAN WITH A COERCIVE WEIGHT FUNCTION

被引:0
作者
Iannizzotto, Antonio [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
DIFFERENCE-EQUATIONS; MULTIPLE SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a p-Laplacian difference equation on the set of integers, involving a coercive weight function and a reaction term satisfying the Ambrosetti-Rabinowitz condition. By means of critical-point theory and a discrete maximum principle, we prove the existence of a positive homoclinic solution.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 16 条
[1]  
Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
[2]  
Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
Cabada A., 2010, ADV DIFFERENCE EQU, V2010
[5]  
Cabada A., PREPRINT
[6]  
Cabada A, 2009, ARAB J SCI ENG, V34, P75
[7]   Multiple solutions for discrete boundary value problems [J].
Cabada, Alberto ;
Iannizzotto, Antonio ;
Tersian, Stepan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :418-428
[8]   Multiple solutions for a discrete boundary value problem involving the p-Laplacian [J].
Candito, Pasquale ;
Giovannelli, Nicola .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :959-964
[9]  
Candito P, 2011, ADV NONLINEAR STUD, V11, P443
[10]  
Ciarlet P.G., 2013, SOC IND APPL MATH SI