Magnetically Separable Fe3O4/BiOBr Microspheres: Synthesis, Characterization, and Photocatalytic Performance for Removal of Anionic Azo Dye

被引:9
|
作者
Jiang, Ru [1 ]
Zhu, Hua-Yue [1 ]
Jiang, Shen-Tao [1 ]
Fu, Yong-Qian [1 ]
Zong, En-Min [1 ]
Li, Jian-Bing [2 ]
Zeng, Guang-Ming [3 ]
机构
[1] Taizhou Univ, Dept Environm Engn, 1139 Municipal Govt Ave, Taizhou 318000, Zhejiang, Peoples R China
[2] Univ British Columbia, Environm Engn Program, Prince George, BC, Canada
[3] Hunan Univ, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
BiOBr; congo red; decolorization; Fe3O4; magnetic separation; photocatalysis; BIOBR MICROSPHERES; CONGO RED; SOLVOTHERMAL SYNTHESIS; WATER-TREATMENT; ORGANIC-DYES; DEGRADATION; FABRICATION; ADSORPTION; HETEROSTRUCTURE; DECOLORIZATION;
D O I
10.1089/ees.2018.0278
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recyclable magnetic Fe3O4/BiOBr microspheres (m-Fe3O4/BiOBr MSs) were synthesized by a simple solvethermal method. The crystals' optical, morphology, and magnetic properties of m-Fe3O4/BiOBr MSs were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis diffuse reflectance spectroscopy, Brunauer-Emmett-Teller, and vibrating sample magnetometry techniques. An anionic dye, Congo red (CR), was selected as a model pollutant to evaluate the photocatalytic activity of m-Fe3O4/BiOBr MSs under simulated solar light irradiation. By calculation, the pseudo-first-order rate constant for photocatalytic degradation of CR was 0.0011 and 0.0046 min(-1) using pure BiOBr MSs and m-Fe3O4/BiOBr MSs, respectively. Enhanced photocatalytic activity of m-Fe3O4/BiOBr MSs can result from superior adsorption and transfer performance to organic contaminants in aqueous system. Both the h(+) radicals and O-2(center dot-) radicals were main active species that drive the photocatalytic decolorization of CR solution by m-Fe3O4/BiOBr MSs. Furthermore, the m-Fe3O4/BiOBr MSs can be easily recovered and recycled after the treatment process because of the presence of magnetic Fe3O4. This work suggests that m-Fe3O4/BiOBr MSs may be a promising photocatalyst for photocatalytic treatment of organic wastewater and other environmental remediation.
引用
收藏
页码:466 / 477
页数:12
相关论文
共 50 条
  • [1] Adsorption of Azo Dye on Magnetically Separable Fe3O4/CeO2 Nanocomposite: Kinetics, Isotherm, Mechanism
    An, Zhihao
    Zhang, Wenwen
    Ma, Jingying
    Zeng, Ke
    Yuan, Ming
    Chen, Donghui
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2022, 28 (02): : 242 - 252
  • [2] Visible-Light Photocatalytic Performance of Magnetically Separable Bi-Modified Fe3O4
    Wang Huanchun
    Xu Haomin
    Lin Yuanhua
    Nan Cewen
    RARE METAL MATERIALS AND ENGINEERING, 2015, 44 : 636 - 639
  • [3] Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe3O4 hybrid nanocomposites under visible-light irradiation
    Gao, Shengwang
    Guo, Changsheng
    Hou, Song
    Wan, Li
    Wang, Qiang
    Lv, Jiapei
    Zhang, Yuan
    Gao, Jianfeng
    Meng, Wei
    Xu, Jian
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 331 : 1 - 12
  • [4] Synthesis and characterization of Fe3O4 /polystyrene microspheres
    Liu, Chun-Li
    Han, Zhao-Rang
    Cui, Lin-Lin
    Yu, Na
    Li, Yu
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2008, 24 (03): : 137 - 140
  • [5] Magnetically separable Fe3O4 nanoparticles: an efficient catalyst for the synthesis of propargylamines
    Sreedhar, B.
    Kumar, A. Suresh
    Reddy, P. Surendra
    TETRAHEDRON LETTERS, 2010, 51 (14) : 1891 - 1895
  • [6] Magnetically separable Fe3O4@C/BiOBr heterojunction for the enhanced visible light-driven photocatalytic performance
    Ren, Xiaozhen
    Sun, Yanhui
    Xing, Hu
    Zhao, Wenwen
    Zhang, Dafeng
    Yin, Jie
    Yao, Shujuan
    Pu, Xipeng
    Li, Wenzhi
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (10)
  • [7] Magnetically separable Fe3O4@C/BiOBr heterojunction for the enhanced visible light-driven photocatalytic performance
    Xiaozhen Ren
    Yanhui Sun
    Hu Xing
    Wenwen Zhao
    Dafeng Zhang
    Jie Yin
    Shujuan Yao
    Xipeng Pu
    Wenzhi Li
    Journal of Nanoparticle Research, 2018, 20
  • [8] Novel Magnetically Separable BiVO4/Fe3O4 Photocatalyst: Synthesis and Photocatalytic Performance under Visible-light Irradiation
    Zhai, Yongqing
    Yin, Yanjie
    Liu, Xiao
    Li, Yanmei
    Wang, Junyan
    Liu, Congcong
    Bian, Gang
    MATERIALS RESEARCH BULLETIN, 2017, 89 : 297 - 306
  • [9] Synthesis of Hollow Flower-Like Fe3O4/MnO2/Mn3O4 Magnetically Separable Microspheres with Valence Heterostructure for Dye Degradation
    Ma, Mingliang
    Yang, Yuying
    Chen, Yan
    Wu, Fei
    Li, Wenting
    Lyu, Ping
    Ma, Yong
    Tan, Weiqiang
    Huang, Weibo
    CATALYSTS, 2019, 9 (07)
  • [10] Photocatalytic activity of magnetically separable TiO2/SiO2/Fe3O4 composite for dye degradation
    Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji Kita-machi, Musashino-shi, Tokyo 180-8633, Japan
    不详
    J. Chem. Eng. Jpn., 9 (662-667):