Blow-up problems for a compressible reactive gas model

被引:2
作者
Ling, Zhengqiu [1 ]
Wang, Zejia [2 ]
机构
[1] Yulin Normal Univ, Coll Math & Informat Sci, Yulin 537000, Guangxi, Peoples R China
[2] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
degenerate parabolic system; nonlocal sources; finite time blow-up; blow-up rate; GLOBAL EXISTENCE; DIFFUSION-EQUATIONS; NONEXISTENCE;
D O I
10.1186/1687-2770-2012-101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a compressible reactive gas model with homogeneous Dirichlet boundary conditions. Under the parameters and the initial data satisfying some conditions, we prove that the solutions have global blow-up, and the blow-up rate is uniform in all compact subsets of the domain. Moreover, the blow-up rates of vertical bar u(t)vertical bar(infinity) and vertical bar v(t)vertical bar infinity are precisely determined.
引用
收藏
页数:16
相关论文
共 21 条
[1]   Existence and nonexistence of global solutions of some nonlocal degenerate parabolic equations [J].
Deng, WB ;
Li, YX ;
Xie, CH .
APPLIED MATHEMATICS LETTERS, 2003, 16 (05) :803-808
[2]   Blow-up and global existence for a nonlocal degenerate parabolic system [J].
Deng, WB ;
Li, YX ;
Xie, CH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :199-217
[3]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[4]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[5]  
GALAKTIONOV VA, 1983, DIFF EQUAT+, V19, P1558
[6]  
Gidas B., 1981, Math. Anal. Appl., VofAdv, P369
[7]  
Guo J.-S., 1992, DIFFERENTIAL INTEGRA, V5, P1237
[8]  
Li FC, 2003, DISCRETE CONT DYN-A, V9, P1519
[9]   Global existence and blow-up for a nonlinear porous medium equation [J].
Li, FC ;
Xie, CH .
APPLIED MATHEMATICS LETTERS, 2003, 16 (02) :185-192
[10]   Critical exponents and lower bounds of blow-up rate for a reaction-diffusion system [J].
Li, HL ;
Wang, MX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (08) :1083-1093