Development of a Radiomics Prediction Model for Histological Type Diagnosis in Solitary Pulmonary Nodules: The Combination of CT and FDG PET

被引:23
作者
Yan, Mengmeng [1 ,2 ]
Wang, Weidong [3 ,4 ]
机构
[1] Urban Vocat Coll Sichuan, Chengdu, Peoples R China
[2] Sichuan Canc Hosp & Inst, Chengdu, Peoples R China
[3] Sichuan Canc Hosp & Inst, Dept Radiat Oncol, Chengdu, Peoples R China
[4] Sichuan Canc Hosp, Radiat Oncol Key Lab Sichuan Prov, Chengdu, Peoples R China
关键词
radiomics; lung cancer; histological subtypes; CT; PET; OROPHARYNGEAL; FEATURES;
D O I
10.3389/fonc.2020.555514
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose To develop a diagnostic model for histological subtypes in lung cancer combined CT and FDG PET. Methods Machine learning binary and four class classification of a cohort of 445 lung cancer patients who have CT and PET simultaneously. The outcomes to be predicted were primary, metastases (Mts), adenocarcinoma (Adc), and squamous cell carcinoma (Sqc). The classification method is a combination of machine learning and feature selection that is a Partition-Membership. The performance metrics include accuracy (Acc), precision (Pre), area under curve (AUC) and kappa statistics. Results The combination of CT and PET radiomics (CPR) binary model showed more than 98% Acc and AUC on predicting Adc, Sqc, primary, and metastases, CPR four-class classification model showed 91% Acc and 0.89 Kappa. Conclusion The proposed CPR models can be used to obtain valid predictions of histological subtypes in lung cancer patients, assisting in diagnosis and shortening the time to diagnostic.
引用
收藏
页数:6
相关论文
共 35 条
[1]  
[Anonymous], 2016, SCI REP UK
[2]   18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-Radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC) - A prospective externally validated study [J].
Carvalho, Sara ;
Leijenaar, Ralph T. H. ;
Troost, Esther G. C. ;
van Timmeren, Janna E. ;
Oberije, Cary ;
van Elmpt, Wouter ;
de Geus-Oei, Lioe-Fee ;
Bussink, Johan ;
Lambin, Philippe .
PLOS ONE, 2018, 13 (03)
[3]  
Erdal BS, 2019, ARXIV190805667
[4]   CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms [J].
Ferreira-Junior, Jose Raniery ;
Koenigkam-Santos, Marcel ;
Magalhaes Tenorio, Ariane Priscilla ;
Faleiros, Matheus Calil ;
Garcia Cipriano, Federico Enrique ;
Fabro, Alexandre Todorovic ;
Nappi, Janne ;
Yoshida, Hiroyuki ;
De Azevedo-Marques, Paulo Mazzoncini .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (01) :163-172
[5]  
Frank E, 2013, P 26 AUSTR JOINT C A, P362
[6]   Optimal Statistical Incorporation of Independent Feature Stability Information into Radiomics Studies [J].
Goetz, Michael ;
Maier-Hein, Klaus H. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas [J].
Kirienko, Margarita ;
Ninatti, Gaia ;
Cozzi, Luca ;
Voulaz, Emanuele ;
Gennaro, Nicolo ;
Barajon, Isabella ;
Ricci, Francesca ;
Carlo-Stella, Carmelo ;
Zucali, Paolo ;
Sollini, Martina ;
Balzarini, Luca ;
Chiti, Arturo .
RADIOLOGIA MEDICA, 2020, 125 (10) :951-960
[8]   Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions [J].
Kirienko, Margarita ;
Cozzi, Luca ;
Rossi, Alexia ;
Voulaz, Emanuele ;
Antunovic, Lidija ;
Fogliata, Antonella ;
Chiti, Arturo ;
Sollini, Martina .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (10) :1649-1660
[9]   Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any? [J].
Konert, Tom ;
Everitt, Sarah ;
La Fontaine, Matthew D. ;
van de Kamer, Jeroen B. ;
MacManus, Michael P. ;
Vogel, Wouter V. ;
Callahan, Jason ;
Sonke, Jan-Jakob .
PLOS ONE, 2020, 15 (02)
[10]  
Lee G, 2020, THERAPY RESPONSE IMA, P221, DOI [10.1007/978-3-030-31171-1_13, DOI 10.1007/978-3-030-31171-1_13]