Estimation of Thermal Conductivity of Amorphous Carbon Nanotube Using Molecular Dynamics Simulations

被引:4
|
作者
Ghosh, Madan Mohan [1 ]
机构
[1] Natl Inst Technol, Dept Met & Mat Engn, Durgapur 713209, India
关键词
Amorphous Carbon Nanotube; Thermal Conductivity; Molecular Dynamics; STATE;
D O I
10.1166/jnn.2013.7366
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It is known that conductive heat transfer takes place from the hotter place to the colder region of a material following Fourier's law of heat conduction and as a consequence the colder region becomes progressively heated up until it reaches to the temperature of the hotter place. Based on the thermal evolution of the material the thermal conductivity can be estimated using the equation of Fourier's law of heat conduction. Present work reports estimation of thermal conductivity of an amorphous carbon nanotube on the basis of thermal evolution associated with conductive heat transfer through the nanotube using molecular dynamics (MD) simulation, which is very promising tool to characterize thermo-physical properties of individual nanosized particles. The estimated value of thermal conductivity of amorphous carbon nanotube is 0.075 W m(-1) K-1 which is in agreement with the data reported in literature for conventional amorphous carbon and is several orders of magnitude smaller than that of crystalline carbon nanotube. The present theoretical study reveals that the thermal conductivity of amorphous carbon nanotube is similar to that of conventional amorphous carbonaceous materials and amorphous carbon nanotube is basically a heat insulating material.
引用
收藏
页码:2961 / 2966
页数:6
相关论文
共 50 条
  • [1] THERMAL CONDUCTIVITY OF CARBON NANOTUBE/NATURAL RUBBER COMPOSITE FROM MOLECULAR DYNAMICS SIMULATIONS
    He, Yan
    Tang, Yuanzheng
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2013, 12 (03)
  • [2] Molecular dynamics simulations of lauric acid confined in carbon nanotube with high thermal conductivity
    Wu, Shuying
    Jiang, Wei
    Ma, Xinyao
    Peng, Deqi
    PHASE TRANSITIONS, 2021, 94 (6-8) : 436 - 444
  • [3] Thermal conductivity of amorphous silica using non-equilibrium molecular dynamics simulations
    Mahajan, S.
    Subbarayan, G.
    Sammakia, B. G.
    2006 PROCEEDINGS 10TH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONICS SYSTEMS, VOLS 1 AND 2, 2006, : 1269 - +
  • [4] Thermal conductivity of molybdenum disulfide nanotube from molecular dynamics simulations
    Meng, Han
    Ma, Dengke
    Yu, Xiaoxiang
    Zhang, Lifa
    Sun, Zhijia
    Yang, Nuo
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 145
  • [5] Molecular Dynamics Simulations of Thermal Transport of Carbon Nanotube Interfaces
    Zhou, Shijun
    Qing, Shan
    Zhang, Xiaohui
    Huang, Haoming
    Hou, Menglin
    ENERGIES, 2024, 17 (06)
  • [6] Thermal Conductivity of Amorphous Polystyrene in Supercritical Carbon Dioxide Studied by Reverse Nonequilibrium Molecular Dynamics Simulations
    Algaer, Elena A.
    Alaghemandi, Mohammad
    Boehm, Michael C.
    Mueller-Plathe, Florian
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (43) : 11487 - 11494
  • [7] Molecular Dynamics Simulations for Anisotropic Thermal Conductivity of Borophene
    Jia, Yue
    Li, Chun
    Jiang, Jin-Wu
    Wei, Ning
    Chen, Yang
    Zhang, Yongjie Jessica
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (02): : 813 - 823
  • [8] Study of thermal conduction of carbon nanotube by molecular dynamics
    Bao Wen-Xing
    Zhu Chang-Chun
    ACTA PHYSICA SINICA, 2006, 55 (07) : 3552 - 3557
  • [9] Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations
    Wang, Shuai-chuang
    Liang, Xin-gang
    Xu, Xiang-hua
    PROCEEDINGS OF THE MICRO/NANOSCALE HEAT TRANSFER INTERNATIONAL CONFERENCE 2008, PTS A AND B, 2008, : 1155 - 1161
  • [10] Investigation of the thermal conductivity of SiO2 glass using molecular dynamics simulations
    Yang, Yongjian
    Tokunaga, Hirofumi
    Hayashi, Kazutaka
    Ono, Madoka
    Mauro, John C.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (12) : 7836 - 7849