Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

被引:112
作者
Naoumkina, Marina A. [1 ]
He, XianZhi [1 ]
Dixon, Richard A. [1 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
基金
美国国家科学基金会;
关键词
D O I
10.1186/1471-2229-8-132
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs) are essential components. Results: In this study, we analyzed TFs responding to yeast elicitor (YE) or methyl jasmonate (MJ). From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH) family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ) transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-beta-glucanase (NtPR2) and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion: These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.
引用
收藏
页数:14
相关论文
共 99 条
[1]   Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula [J].
Achnine, L ;
Huhman, DV ;
Farag, MA ;
Sumner, LW ;
Blount, JW ;
Dixon, RA .
PLANT JOURNAL, 2005, 41 (06) :875-887
[2]  
[Anonymous], ArrayExpress
[3]   BIOCHEMICAL-MECHANISMS OF DISEASE RESISTANCE [J].
BELL, AA .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1981, 32 :21-81
[4]   A gene expression atlas of the model legume Medicago truncatula [J].
Benedito, Vagner A. ;
Torres-Jerez, Ivone ;
Murray, Jeremy D. ;
Andriankaja, Andry ;
Allen, Stacy ;
Kakar, Klementina ;
Wandrey, Maren ;
Verdier, Jerome ;
Zuber, Helene ;
Ott, Thomas ;
Moreau, Sandra ;
Niebel, Andreas ;
Frickey, Tancred ;
Weiller, Georg ;
He, Ji ;
Dai, Xinbin ;
Zhao, Patrick X. ;
Tang, Yuhong ;
Udvardi, Michael K. .
PLANT JOURNAL, 2008, 55 (03) :504-513
[5]   HYDROGEN-PEROXIDE DOES NOT FUNCTION DOWNSTREAM OF SALICYLIC-ACID IN THE INDUCTION OF PR PROTEIN EXPRESSION [J].
BI, YM ;
KENTON, P ;
MUR, L ;
DARBY, R ;
DRAPER, J .
PLANT JOURNAL, 1995, 8 (02) :235-245
[6]   Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway [J].
Blount, JW ;
Korth, KL ;
Masoud, SA ;
Rasmussen, S ;
Lamb, C ;
Dixon, RA .
PLANT PHYSIOLOGY, 2000, 122 (01) :107-116
[7]   Lignin biosynthesis [J].
Boerjan, W ;
Ralph, J ;
Baucher, M .
ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 :519-546
[8]   SYNTHESIS OF CELL-WALL COMPONENTS - ASPECTS OF CONTROL [J].
BOLWELL, GP .
PHYTOCHEMISTRY, 1988, 27 (05) :1235-1253
[9]   High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1 [J].
Bovy, A ;
de Vos, R ;
Kemper, M ;
Schijlen, E ;
Pertejo, MA ;
Muir, S ;
Collins, G ;
Robinson, S ;
Verhoeyen, M ;
Hughes, S ;
Santos-Buelga, C ;
van Tunen, A .
PLANT CELL, 2002, 14 (10) :2509-2526
[10]   The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia [J].
Bradley, JM ;
Davies, KM ;
Deroles, SC ;
Bloor, SJ ;
Lewis, DH .
PLANT JOURNAL, 1998, 13 (03) :381-392