The applications of C-semigroups to the Dirac equation

被引:2
作者
Qiang, Jingren [1 ]
Li, Miao [1 ]
Zheng, Quan [2 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[2] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
关键词
Fourier multiplier; Dirac operator; C-semigroup; Integrated semigroup; Generator;
D O I
10.1016/j.aml.2008.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study first-order symmetric, hyperbolic systems of differential operator with constant coefficients on L(P)-spaces. We show that such systems can be governed by some C-semigroups and as an application we consider the Dirac equation. Our result improves that of Nicaise [S. Nicaise, The Hille-Yosida and Trotter-Kato theorems for integrated semigroups, J. Math. Anal. Appl. 180 (1993) 303-316]. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:422 / 427
页数:6
相关论文
共 8 条
[1]  
Arendt W., 2001, Monographs in Mathematics, V96
[2]  
BRENNER P, 1966, MATH SCAND, V19, P357
[3]   C-SEMIGROUPS AND STRONGLY CONTINUOUS SEMIGROUPS [J].
DELAUBENEELS, R .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (1-2) :227-255
[4]  
HIEBER M, 1991, LECT NOTES PURE APPL, V135, P259
[5]   THE APPLICATION OF C-SEMIGROUPS TO DIFFERENTIAL-OPERATORS IN L(P)(R(N)) [J].
LEI, YS ;
ZHENG, Q .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 188 (03) :809-818
[6]  
Miyachi A., 1980, J. Fac. Sci. Univ. Tokyo Sect. IA Math, V27, P331
[7]   THE HILLE-YOSIDA AND TROTTER-KATO THEOREMS FOR INTEGRATED SEMIGROUPS [J].
NICAISE, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 180 (02) :303-316
[8]  
ZHENG Q, 1992, J HUAZHONG U SCI TEC, V20, P181