Finite Repetitive Generalized Cluster Complexes and d-Cluster Categories

被引:0
作者
Zou, Teng [1 ]
Zhu, Bin [2 ]
机构
[1] Sichuan Univ, Sch Math Sci, Chengdu 610064, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
d-cluster categories; repetitive generalized cluster complexes; d-cluster tilted; algebras; coverings; TRIANGULATED CATEGORIES; TILTED ALGEBRAS; MUTATION;
D O I
10.1142/S1005386713000114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any positive integer n, we construct an n-repetitive generalized cluster complex (a simplicial complex) associated with a given finite root system by defining a compatibility degree on the n-repetitive set of the colored root system. This simplicial complex includes Fomin-Reading's generalized cluster complex as a special case when n=1. We also introduce the intermediate coverings (called generalized d-cluster categories) of d-cluster categories of hereditary algebras, and study the d-cluster tilting objects and their endomorphism algebras in those categories. In particular, we show that the endomorphism algebras of d-cluster tilting objects in the generalized d-cluster categories provide the (finite) coverings of the corresponding (usual) d-cluster tilted algebras. Moreover, we prove that the generalized d-cluster categories of hereditary algebras of finite representation type provide a category model for the n-repetitive generalized cluster complexes.
引用
收藏
页码:123 / 140
页数:18
相关论文
共 30 条
[1]  
[Anonymous], 2007, LONDON MATH SOC LECT
[2]   m-cluster categories and m-replicated algebras [J].
Assem, I. ;
Brustle, T. ;
Schiffler, R. ;
Todorov, G. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (04) :884-901
[3]   On the Galois coverings of a cluster-tilted algebra [J].
Assem, Ibrahim ;
Bruestle, Thomas ;
Schiffler, Ralf .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (07) :1450-1463
[4]  
Baur K., 2007, INT MATH RES NOTICES, P1, DOI DOI 10.1093/IMRN/RNM011)
[5]   A geometric description of m-cluster categories [J].
Baur, Karin ;
Marsh, Robert J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) :5789-5803
[6]  
Buan A., 2006, CONT MATH, V406, P1
[7]  
Buan AB, 2007, T AM MATH SOC, V359, P323
[8]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[9]   Coloured quiver mutation for higher cluster categories [J].
Buan, Aslak Bakke ;
Thomas, Hugh .
ADVANCES IN MATHEMATICS, 2009, 222 (03) :971-995
[10]   Quivers with relations arising from clusters (An case) [J].
Caldero, P ;
Chapoton, F ;
Schiffler, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :1347-1364