Video smoke detection based on deep saliency network

被引:61
|
作者
Xu, Gao [1 ]
Zhang, Yongming [1 ]
Zhang, Qixing [1 ]
Lin, Gaohua [1 ]
Wang, Zhong [2 ]
Jia, Yang [3 ]
Wang, Jinjun [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China
[3] XIAN Univ Posts & Telecommun, Xian 710121, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Video smoke detection; Deep saliency network; Salient map; Existence prediction; OBJECT DETECTION; SEGMENTATION;
D O I
10.1016/j.firesaf.2019.03.004
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Video smoke detection is a promising fire detection method, especially in open or large spaces and outdoor environments. Traditional video smoke detection methods usually consist of candidate region extraction and classification but lack powerful characterization for smoke. In this paper, we propose a novel video smoke detection method based on deep saliency network. Visual saliency detection aims to highlight the most important object regions in an image. The pixel-level and object-level salient convolutional neural networks are combined to extract the informative smoke saliency map. An end-to-end framework for salient smoke detection and the existence prediction of smoke is proposed for application in video smoke detection. A deep feature map is combined with a saliency map to predict the existence of smoke in an image. Initial and augmented datasets are built to measure the performance of frameworks with different design strategies. Qualitative and quantitative analyses at the frame-level and pixel-level demonstrate the excellent performance of the ultimate framework.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 50 条
  • [41] Video saliency detection via bagging-based prediction and spatiotemporal propagation
    Zhou, Xiaofei
    Liu, Zhi
    Li, Kai
    Sun, Guangling
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 51 : 131 - 143
  • [42] Coherency Based Spatio-Temporal Saliency Detection for Video Object Segmentation
    Mahapatra, Dwarikanath
    Gilani, Syed Omer
    Saini, Mukesh Kumar
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (03) : 454 - 462
  • [43] Spatiotemporal Saliency Detection Based on Maximum Consistency Superpixels Merging for Video Analysis
    Zhang, Jianhua
    Chen, Jingbo
    Wang, Qichao
    Chen, Shengyong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 606 - 614
  • [44] Stereoscopic video saliency detection based on spatiotemporal correlation and depth confidence optimization
    Zhang, Ping
    Liu, Jingwen
    Wang, Xiaoyang
    Pu, Tian
    Fei, Chun
    Guo, Zhengkui
    NEUROCOMPUTING, 2020, 377 : 256 - 268
  • [45] 3DVSD: An end-to-end 3D convolutional object detection network for video smoke detection
    Huo, Yinuo
    Zhang, Qixing
    Zhang, Yongming
    Zhu, Jiping
    Wang, Jinjun
    FIRE SAFETY JOURNAL, 2022, 134
  • [46] Multi-Features Fusion Based on Boolean Map for Video Saliency Detection
    Wei, Longsheng
    Wang, Min
    Liu, Wei
    Wang, Xinmei
    Sun, Jiale
    Yin, Xu
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7589 - 7594
  • [47] Parallel Feature Network For Saliency Detection
    Fang, Zheng
    Cao, Tieyong
    Yang, Jibin
    Sun, Meng
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (02) : 480 - 485
  • [48] Dense Dilation Network for Saliency Detection
    Fang, Zheng
    Cao, Tieyong
    Yang, Jibin
    Xing, Yibo
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [49] Saliency Based Deep Neural Network for Automatic Detection of Gadolinium-Enhancing Multiple Sclerosis Lesions in Brain MRI
    Durso-Finley, Joshua
    Arnold, Douglas L.
    Arbel, Tal
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 108 - 118
  • [50] Video Flame and Smoke Based Fire Detection Algorithms: A Literature Review
    Gaur, Anshul
    Singh, Abhishek
    Kumar, Anuj
    Kumar, Ashok
    Kapoor, Kamal
    FIRE TECHNOLOGY, 2020, 56 (05) : 1943 - 1980