Video smoke detection based on deep saliency network

被引:61
|
作者
Xu, Gao [1 ]
Zhang, Yongming [1 ]
Zhang, Qixing [1 ]
Lin, Gaohua [1 ]
Wang, Zhong [2 ]
Jia, Yang [3 ]
Wang, Jinjun [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China
[3] XIAN Univ Posts & Telecommun, Xian 710121, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Video smoke detection; Deep saliency network; Salient map; Existence prediction; OBJECT DETECTION; SEGMENTATION;
D O I
10.1016/j.firesaf.2019.03.004
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Video smoke detection is a promising fire detection method, especially in open or large spaces and outdoor environments. Traditional video smoke detection methods usually consist of candidate region extraction and classification but lack powerful characterization for smoke. In this paper, we propose a novel video smoke detection method based on deep saliency network. Visual saliency detection aims to highlight the most important object regions in an image. The pixel-level and object-level salient convolutional neural networks are combined to extract the informative smoke saliency map. An end-to-end framework for salient smoke detection and the existence prediction of smoke is proposed for application in video smoke detection. A deep feature map is combined with a saliency map to predict the existence of smoke in an image. Initial and augmented datasets are built to measure the performance of frameworks with different design strategies. Qualitative and quantitative analyses at the frame-level and pixel-level demonstrate the excellent performance of the ultimate framework.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 50 条
  • [21] A SALIENCY-BASED RATE CONTROL FOR PEOPLE DETECTION IN VIDEO
    Milani, Simone
    Bernardini, Riccardo
    Rinaldo, Roberto
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2016 - 2020
  • [22] Moving object detection in aerial video based on spatiotemporal saliency
    Shen Hao
    Li Shuxiao
    Zhu Chengfei
    Chang Hongxing
    Zhang Jinglan
    CHINESE JOURNAL OF AERONAUTICS, 2013, 26 (05) : 1211 - 1217
  • [23] Motion-Aware Rapid Video Saliency Detection
    Guo, Fang
    Wang, Wenguan
    Shen, Ziyi
    Shen, Jianbing
    Shao, Ling
    Tao, Dacheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (12) : 4887 - 4898
  • [24] Moving object detection in aerial video based on spatiotemporal saliency
    Shen Hao
    Li Shuxiao
    Zhu Chengfei
    Chang Hongxing
    Zhang Jinglan
    Chinese Journal of Aeronautics, 2013, (05) : 1211 - 1217
  • [25] Superpixel-based video saliency detection via the fusion of spatiotemporal saliency and temporal coherency
    Li, Yandi
    Xu, Xiping
    Zhang, Ning
    Du, Enyu
    OPTICAL ENGINEERING, 2019, 58 (08)
  • [26] Unsupervised Saliency Detection in 3-D-Video Based on Multiscale Segmentation and Refinement
    Zhang, Ping
    Yan, Pengyu
    Wu, Jiang
    Liu, Jingwen
    Shen, Fengcan
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (09) : 1384 - 1388
  • [27] A spatiotemporal model for video saliency detection
    Kalboussi, Rahma
    Abdellaoui, Mehrez
    Douik, Ali
    2016 SECOND INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2016,
  • [28] Video saliency detection by gestalt theory
    Fang, Yuming
    Zhang, Xiaoqiang
    Yuan, Feiniu
    Imamoglu, Nevrez
    Liu, Haiwen
    PATTERN RECOGNITION, 2019, 96
  • [29] Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video
    Shao, Zhenfeng
    Wang, Linggang
    Wang, Zhongyuan
    Du, Wan
    Wu, Wenjing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (03) : 781 - 794
  • [30] Robust Object Detection Based on Deep Neural Network and Saliency Features from Visible and Thermal Images
    Mebtouche, Naoual El-Djouher
    Baha, Nadia
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 2, 2022, 1418 : 529 - 540