Video smoke detection based on deep saliency network

被引:61
|
作者
Xu, Gao [1 ]
Zhang, Yongming [1 ]
Zhang, Qixing [1 ]
Lin, Gaohua [1 ]
Wang, Zhong [2 ]
Jia, Yang [3 ]
Wang, Jinjun [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China
[3] XIAN Univ Posts & Telecommun, Xian 710121, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Video smoke detection; Deep saliency network; Salient map; Existence prediction; OBJECT DETECTION; SEGMENTATION;
D O I
10.1016/j.firesaf.2019.03.004
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Video smoke detection is a promising fire detection method, especially in open or large spaces and outdoor environments. Traditional video smoke detection methods usually consist of candidate region extraction and classification but lack powerful characterization for smoke. In this paper, we propose a novel video smoke detection method based on deep saliency network. Visual saliency detection aims to highlight the most important object regions in an image. The pixel-level and object-level salient convolutional neural networks are combined to extract the informative smoke saliency map. An end-to-end framework for salient smoke detection and the existence prediction of smoke is proposed for application in video smoke detection. A deep feature map is combined with a saliency map to predict the existence of smoke in an image. Initial and augmented datasets are built to measure the performance of frameworks with different design strategies. Qualitative and quantitative analyses at the frame-level and pixel-level demonstrate the excellent performance of the ultimate framework.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 50 条
  • [11] A novel deep network and aggregation model for saliency detection
    Liang, Ye
    Liu, Hongzhe
    Ma, Nan
    VISUAL COMPUTER, 2020, 36 (09) : 1883 - 1895
  • [12] Video Smoke Detection Based on Gaussian Mixture Model and Convolutional Neural Network
    Li Peng
    Zhang Yan
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (21)
  • [13] Fall Detection Based on Deep Saliency Images
    Li, Hongjun
    Ding, Yupeng
    Li, Chaobo
    Zhou, Ze
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 455 - 460
  • [14] AN IMPROVED OBJECT DETECTION METHOD BASED ON DEEP CONVOLUTION NEURAL NETWORK FOR SMOKE DETECTION
    Zeng, Junying
    Lin, Zuoyong
    Qi, Chuanbo
    Zhao, Xiaoxiao
    Wang, Fan
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2018, : 184 - 189
  • [15] Video Saliency Detection Based on Boolean Map Theory
    Kalboussi, Rahma
    Abdellaoui, Mehrez
    Douik, Ali
    IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 119 - 128
  • [16] VIDEO SALIENCY DETECTION BASED ON RANDOM WALK WITH RESTART
    Kim, Jun-Seong
    Kim, Hansang
    Sim, Jae-Young
    Kim, Chang-Su
    Lee, Sang-Uk
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2465 - 2469
  • [17] Bilevel Feature Learning for Video Saliency Detection
    Chen, Chenglizhao
    Li, Shuai
    Qin, Hong
    Pan, Zhenkuan
    Yang, Guowei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (12) : 3324 - 3336
  • [18] Saliency detection using a deep conditional random field network
    Qiu, Wenliang
    Gao, Xinbo
    Han, Bing
    PATTERN RECOGNITION, 2020, 103 (103)
  • [19] Video saliency detection based on low-level saliency fusion and saliency-aware geodesic
    Li, Weisheng
    Feng, Siqin
    Guan, Hua-Ping
    Zhan, Ziwei
    Gong, Cheng
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (01)
  • [20] DevsNet: Deep Video Saliency Network using Short-term and Long-term Cues
    Fang, Yuming
    Zhang, Chi
    Min, Xiongkuo
    Huang, Hanqin
    Yi, Yugen
    Zhai, Guangtao
    Lin, Chia-Wen
    PATTERN RECOGNITION, 2020, 103 (103)