Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon

被引:28
作者
Drumm, Daniel W. [1 ,2 ]
Budi, Akin [1 ,2 ]
Per, Manolo C. [2 ,3 ]
Russo, Salvy P. [2 ]
Hollenberg, Lloyd C. L. [1 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[2] RMIT Univ, Sch Appl Sci, Melbourne, Vic 3001, Australia
[3] CSIRO Mat Sci & Engn, Virtual Nanosci Lab, Parkville, Vic 3052, Australia
来源
NANOSCALE RESEARCH LETTERS | 2013年 / 8卷
基金
澳大利亚研究理事会;
关键词
Density functional theory; Valley splitting; d-Doped layers; Phosphorus in silicon; Basis sets; ELECTRONIC-STRUCTURE; QUANTUM-WELLS; PSEUDOPOTENTIALS; SUPERLATTICES; LAYERS;
D O I
10.1186/1556-276X-8-111
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated delta-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 55 条
[1]  
[Anonymous], P 13 INT WORKSH COMP
[2]  
[Anonymous], 1972, The Mathematical Theory of Symmetry in Solids
[3]  
[Anonymous], P 2010 IEEE SIL NAN
[4]   The SIESTA method;: developments and applicability [J].
Artacho, Emilio ;
Anglada, E. ;
Dieguez, O. ;
Gale, J. D. ;
Garcia, A. ;
Junquera, J. ;
Martin, R. M. ;
Ordejon, P. ;
Pruneda, J. M. ;
Sanchez-Portal, D. ;
Soler, J. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (06)
[5]   Ab initio modelling of band states in doped diamond [J].
Barnard, AS ;
Russo, SP ;
Snook, IK .
PHILOSOPHICAL MAGAZINE, 2003, 83 (09) :1163-1174
[6]   Ab initio modeling of B and N in C29 and C29H24 nanodiamond [J].
Barnard, AS ;
Russo, SP ;
Snook, IK .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (23) :10725-10728
[7]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models [J].
Boykin, TB ;
Klimeck, G ;
Friesen, M ;
Coppersmith, SN ;
von Allmen, P ;
Oyafuso, F ;
Lee, S .
PHYSICAL REVIEW B, 2004, 70 (16) :1-12
[10]   Electronic properties of multiple adjacent δ-doped Si:P layers: The approach to monolayer confinement [J].
Budi, A. ;
Drumm, D. W. ;
Per, M. C. ;
Tregonning, A. ;
Russo, S. P. ;
Hollenberg, L. C. L. .
PHYSICAL REVIEW B, 2012, 86 (16)