Sharp Trace Hardy-Sobolev-Maz'ya Inequalities and the Fractional Laplacian

被引:41
作者
Filippas, Stathis [1 ]
Moschini, Luisa [2 ]
Tertikas, Achilles [3 ]
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[2] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, I-00185 Rome, Italy
[3] Univ Crete, Dept Math, Iraklion 71409, Greece
关键词
GAMMA-CONVERGENCE;
D O I
10.1007/s00205-012-0594-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we establish trace Hardy and trace Hardy-Sobolev-Maz'ya inequalities with best Hardy constants for domains satisfying suitable geometric assumptions such as mean convexity or convexity. We then use them to produce fractional Hardy-Sobolev-Maz'ya inequalities with best Hardy constants for various fractional Laplacians. In the case where the domain is the half space, our results cover the full range of the exponent (0, 1) of the fractional Laplacians. In particular, we give a complete answer in the L (2) setting to an open problem raised by Frank and Seiringer ("Sharp fractional Hardy inequalities in half-spaces," in Around the research of Vladimir Maz'ya. International Mathematical Series, 2010).
引用
收藏
页码:109 / 161
页数:53
相关论文
共 41 条
[1]  
ABRAMOWITZ I., 1964, NBS APPL MATH SERIES, V55
[2]   Phase transition with the line-tension effect [J].
Alberti, G ;
Bouchitte, G ;
Seppecher, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (01) :1-46
[3]   Sharp Hardy inequalities in the half space with trace remainder term [J].
Alvino, Angelo ;
Volpicelli, Roberta ;
Ferone, Adele .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) :5466-5472
[4]   ON STRONG BARRIERS AND AN INEQUALITY OF HARDY FOR DOMAINS IN RN [J].
ANCONA, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 :274-290
[5]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[6]  
[Anonymous], 1999, The Maz'ya Anniversary Collection, DOI DOI 10.1007/978-3-0348-8672-7_5
[7]   THE CONVEXITY OF A DOMAIN AND THE SUPERHARMONICITY OF THE SIGNED DISTANCE FUNCTION [J].
ARMITAGE, DH ;
KURAN, U .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (04) :598-600
[8]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[9]   Censored stable processes [J].
Bogdan, K ;
Burdzy, K ;
Chen, ZQ .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (01) :89-152
[10]   The best constant in a fractional Hardy inequality [J].
Bogdan, Krzysztof ;
Dyda, Bartlomiej .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) :629-638