Phosphorylation of Ser2078 modulates the Notch2 function in 32D cell differentiation

被引:28
作者
Inglés-Esteve, J
Espinosa, L
Milner, LA
Caelles, C
Bigas, A [1 ]
机构
[1] Ctr Mol Oncol, Inst Recerca Oncol, Barcelona 08907, Spain
[2] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
[3] Univ Barcelona, Fac Farm, Dept Bioquim, E-08028 Barcelona, Spain
关键词
D O I
10.1074/jbc.M104703200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Notch signaling is involved in the regulation of many cell fate determination events in both embryonic development and adult tissue homeostasis. We previously demonstrated that Notch1 and Notch2 molecules inhibit myeloid differentiation in a cytokine-specific manner and that the Notch cytokine response domain is necessary for this functional specificity. We have now investigated the putative role of phosphorylation in the activity of Notch in response to cytokine signals. Our results show that the granulocyte colony-stimulating factor (G-CSF) stimulation of 32D cells expressing the intracellular Notch2 protein induces phosphorylation at specific sites of this molecule, rendering the molecule inactive and permitting differentiation of these cells. In contrast, when cells are stimulated with granulocyte macrophage colony-stimulating factor (GM-CSF), intracellular notch2 is not phosphorylated at these residues and differentiation is inhibited. We also show that deletion of the Ser/Thr-rich region between amino acids 2067 and 2099 abrogates G-CSF-induced phosphorylation and results in a molecule that inhibits differentiation in response to either G-CSF or GM-CSF. Our results further indicate that Ser(2078) is a critical residue for phosphorylation and modulation of Notch2 activity in the context of G-CSF-induced differentiation of 32D cells.
引用
收藏
页码:44873 / 44880
页数:8
相关论文
共 71 条
[1]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[2]   Interaction between wingless and notch signaling pathways mediated by dishevelled [J].
Axelrod, JD ;
Matsuno, K ;
ArtavanisTsakonas, S ;
Perrimon, N .
SCIENCE, 1996, 271 (5257) :1826-1832
[3]  
Bao ZZ, 1997, J NEUROSCI, V17, P1425
[4]   Notch signaling directly controls cell proliferation in the Drosophila wing disc [J].
Baonza, A ;
Garcia-Bellido, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2609-2614
[5]   Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C-elegans vulval development [J].
Berset, T ;
Hoier, EF ;
Battu, G ;
Canevascini, S ;
Hajnal, A .
SCIENCE, 2001, 291 (5506) :1055-1058
[6]   Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines [J].
Bigas, A ;
Martin, DIK ;
Milner, LA .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (04) :2324-2333
[7]   Intracellular cleavage of notch leads to a heterodimeric receptor on the plasma membrane [J].
Blaumueller, CM ;
Qi, HL ;
Zagouras, P ;
ArtavanisTsakonas, S .
CELL, 1997, 90 (02) :281-291
[8]   Remarkable roles of proteolysis on and beyond the cell surface [J].
Blobel, CP .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (05) :606-612
[9]   A novel proteolytic cleavage involved in Notch signaling:: The role of the disintegrin-metalloprotease TACE [J].
Brou, C ;
Logeat, F ;
Gupta, N ;
Bessia, C ;
LeBail, O ;
Doedens, JR ;
Cumano, A ;
Roux, P ;
Black, RA ;
Israël, A .
MOLECULAR CELL, 2000, 5 (02) :207-216
[10]   Glycosyltransferase activity of fringe modulates notch-delta interactions [J].
Brückner, K ;
Perez, L ;
Clausen, H ;
Cohen, S .
NATURE, 2000, 406 (6794) :411-415