THREE SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM INVOLVING NONLOCAL FRACTIONAL p-LAPLACIAN

被引:18
作者
Azroul, E. [1 ]
Benkirane, A. [1 ]
Srati, M. [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Lab Math Anal & Applicat, Fes, Morocco
关键词
Nonlocal Kirchhoff-type problem; fractional p; laplacian; fractional Sobolev space; three critical points theorem; EQUATIONS;
D O I
10.15352/aot.1901-1464
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the three critical points theorem, we obtain the existence of three weak solutions for a Kirchhoff-type problem involving the nonlocal fractional p-Laplacian operator in a fractional Sobolev space, with homogeneous Dirichlet boundary conditions.
引用
收藏
页码:821 / 822
页数:2
相关论文
共 25 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[3]  
[Anonymous], 2002, THESIS U FRIEBURG GE
[4]  
[Anonymous], 1989, APPL MATH SCI
[5]  
[Anonymous], 1883, VORLESUNGEN MECHANIK
[6]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[7]  
Bonanno G., NONLINEAR ANAL, V75, P2992
[8]   Nonlinear difference equations investigated via critical point methods [J].
Bonanno, Gabriele ;
Candito, Pasquale .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) :3180-3186
[9]  
Brezies H., 2011, Functional Analysis. Sobolev Spaces and Partial Differential Equations, DOI [10.1007/978-0-387-70914-7, DOI 10.1007/978-0-387-70914-7]
[10]   Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator [J].
Cammaroto, F. ;
Vilasi, L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1841-1852