Congruence subgroups of braid groups

被引:3
作者
Stylianakis, Charalampos [1 ]
机构
[1] Univ Glasgow, Dept Math & Stat, Glasgow G12 8QW, Lanark, Scotland
关键词
Braid groups; congruence subgroups; symplectic representation; MONODROMY; REPRESENTATIONS;
D O I
10.1142/S0218196718500169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a description of the generators of the prime level congruence subgroups of braid groups. Also, we give a new presentation of the symplectic group over a finite field, and we calculate the symmetric quotients of the prime level congruence subgroups of braid groups. Finally, we find a finite generating set for the level-3 congruence subgroup of the braid group on three strands.
引用
收藏
页码:345 / 364
页数:20
相关论文
共 27 条
[1]   BRAIDS, MONODROMY AND SYMPLECTIC GROUPS [J].
ACAMPO, N .
COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (02) :318-327
[2]  
[Anonymous], 2004, COMBINATORIAL GROUP
[3]  
[Anonymous], 1959, P 4 CAN MATH C BANFF
[4]  
Arnold Vladimir Igorevich, 1968, FUNCT ANAL APPL+, V2, P1
[5]   The faithfulness of the monodromy representations associated with certain families of algebraic curves [J].
Asada, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 159 (2-3) :123-147
[6]   FINITE FACTOR GROUPS OF BRAID GROUPS [J].
ASSION, J .
MATHEMATISCHE ZEITSCHRIFT, 1978, 163 (03) :291-302
[7]  
Birman J.S., 1971, Advances in the Theory of Riemann Surfaces, V66, P81
[8]  
Birman J. S., 2016, ANN MATH STUDIES, V82
[9]  
Birman JS, 2005, HANDBOOK OF KNOT THEORY, P19, DOI 10.1016/B978-044451452-3/50003-4
[10]   SIEGELS MODULAR GROUP [J].
BIRMAN, JS .
MATHEMATISCHE ANNALEN, 1971, 191 (01) :59-&