Homotopy analysis method for solving Abel differential equation of fractional order

被引:20
作者
Jafari, Hossein [1 ]
Sayevand, Khosro [2 ]
Tajadodi, Haleh [1 ]
Baleanu, Dumitru [3 ,4 ,5 ]
机构
[1] Univ Mazandaran, Dept Math, Babol Sar, Iran
[2] Univ Malayer, Fac Basic Sci, Dept Math, Malayer, Iran
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, Ankara, Turkey
[4] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia
[5] Inst Space Sci, R-76900 Magurele, Romania
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2013年 / 11卷 / 10期
关键词
Abel differential equation; fractional derivative; homotopy analysis method; DIFFUSION;
D O I
10.2478/s11534-013-0209-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, the homotopy analysis method is used for solving the Abel differential equation with fractional order within the Caputo sense. Stabilityand convergence of the proposed approach is investigated. The numerical results demonstrate that the homotopy analysis method is accurate and readily implemented.
引用
收藏
页码:1523 / 1527
页数:5
相关论文
共 23 条
[1]   On convergence of homotopy analysis method and its modification for fractional modified KdV equations [J].
Abdulaziz O. ;
Bataineh A.S. ;
Hashim I. .
Journal of Applied Mathematics and Computing, 2010, 33 (1-2) :61-81
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 2011, J KING SAUD UNIV SCI, DOI DOI 10.1016/j.jksus.2010.06.023
[4]  
[Anonymous], 2012, Series on Complexity, Nonlinearity and Chaos, DOI 10.1142/10044
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]  
Carpinteri A., 1997, Fractals and Fractional Calculus in Continuum Mechanics
[7]   Abel differential equations admitting a certain first integral [J].
Gine, Jaime ;
Santallusia, Xavier .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (01) :187-199
[8]  
Hilfer, 2000, APPL FRACTIONAL CALC
[9]  
Jafari H, 2010, INT J NONLIN SCI NUM, V11, P271
[10]   Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation [J].
Jafari, H. ;
Seifi, S. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :2006-2012