Deep Neural Networks on Chip - A Survey

被引:4
|
作者
Huo Yingge [1 ]
Ali, Imran [1 ]
Lee, Kang-Yoon [1 ]
机构
[1] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon, South Korea
来源
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020) | 2020年
关键词
Deep neural networks; hardware; neuromorphic; digital; analog;
D O I
10.1109/BigComp48618.2020.00016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Currently, deep neural networks (DNNs) are widely used for various applications and have achieved state-of-the-art performances. A survey about the prior researches addressing efficient processing of DNNs in hardware domain is presented in this paper. Firstly, the concept and conventional structure of DNNs is introduced. Secondly different hardware platforms that used for DNNs on chip processing are emphasized in detail. Thirdly, it presents the main approaches for achieving energy efficiency and decreasing the computational cost, while maintaining accuracy for hardware implementation. Finally, the explorable research directions are discussed. From this work, this survey can provide a reference to the hardware researchers in the area of neural networks.
引用
收藏
页码:589 / 592
页数:4
相关论文
共 50 条
  • [1] A survey on the applications of Deep Neural Networks
    Latha, R. S.
    Sreekanth, G. R. R.
    Suganthe, R. C.
    Selvaraj, R. Esakki
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [2] A survey of uncertainty in deep neural networks
    Gawlikowski, Jakob
    Tassi, Cedrique Rovile Njieutcheu
    Ali, Mohsin
    Lee, Jongseok
    Humt, Matthias
    Feng, Jianxiang
    Kruspe, Anna
    Triebel, Rudolph
    Jung, Peter
    Roscher, Ribana
    Shahzad, Muhammad
    Yang, Wen
    Bamler, Richard
    Zhu, Xiao Xiang
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 1513 - 1589
  • [3] A survey of uncertainty in deep neural networks
    Jakob Gawlikowski
    Cedrique Rovile Njieutcheu Tassi
    Mohsin Ali
    Jongseok Lee
    Matthias Humt
    Jianxiang Feng
    Anna Kruspe
    Rudolph Triebel
    Peter Jung
    Ribana Roscher
    Muhammad Shahzad
    Wen Yang
    Richard Bamler
    Xiao Xiang Zhu
    Artificial Intelligence Review, 2023, 56 : 1513 - 1589
  • [4] A Survey on Fuzzy Deep Neural Networks
    Das, Rangan
    Sen, Sagnik
    Maulik, Ujjwal
    ACM COMPUTING SURVEYS, 2020, 53 (03)
  • [5] Hyperbolic Deep Neural Networks: A Survey
    Peng, Wei
    Varanka, Tuomas
    Mostafa, Abdelrahman
    Shi, Henglin
    Zhao, Guoying
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10023 - 10044
  • [6] Survey on Testing of Deep Neural Networks
    Wang Z.
    Yan M.
    Liu S.
    Chen J.-J.
    Zhang D.-D.
    Wu Z.
    Chen X.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (05): : 1255 - 1275
  • [7] Analyzing Networks-on-Chip based Deep Neural Networks
    Ascia, Giuseppe
    Catania, Vincenzo
    Monteleone, Salvatore
    Palesi, Maurizio
    Patti, Davide
    Jose, John
    PROCEEDINGS OF THE 13TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON NETWORKS-ON-CHIP (NOCS'19), 2019,
  • [8] System on Chip Testbed for Deep Neuromorphic Neural Networks
    Rodriguez, Nicolas
    Villemur, Martin
    Klepatsch, Daniel
    Ivanovich, Diego Gigena
    Julian, Pedro
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [9] A Survey of Accelerator Architectures for Deep Neural Networks
    Chen, Yiran
    Xie, Yuan
    Song, Linghao
    Chen, Fan
    Tang, Tianqi
    ENGINEERING, 2020, 6 (03) : 264 - 274
  • [10] Deep Neural Networks and Tabular Data: A Survey
    Borisov, Vadim
    Leemann, Tobias
    Sessler, Kathrin
    Haug, Johannes
    Pawelczyk, Martin
    Kasneci, Gjergji
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 7499 - 7519