Nanoporous polymer-based composites for enhanced hydrogen storage

被引:36
作者
Tian, Mi [1 ]
Rochat, Sebastien [2 ]
Polak-Krasna, Katarzyna [3 ]
Holyfield, Leighton T. [1 ]
Burrows, Andrew D. [2 ]
Bowen, Christopher R. [3 ]
Mays, Timothy J. [1 ]
机构
[1] Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England
[2] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[3] Univ Bath, Dept Mech Engn, Bath BA2 7AY, Avon, England
来源
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY | 2019年 / 25卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Polymer of intrinsic microporosity; Nano-composite membrane; Hydrogen storage; Mechanical properties; Hydrogen adsorption kinetics; METAL-ORGANIC FRAMEWORKS; INTRINSIC MICROPOROSITY PIM-1; PORE-SIZE; ADSORPTION; CARBONS;
D O I
10.1007/s10450-019-00065-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The exploration and evaluation of new composites possessing both processability and enhanced hydrogen storage capacity are of significant interest for onboard hydrogen storage systems and fuel cell based electric vehicle development. Here we demonstrate the fabrication of composite membranes with sufficient mechanical properties for enhanced hydrogen storage that are based on a polymer of intrinsic microporosity (PIM-1) matrix containing nano-sized fillers: activated carbon (AX21) or metal-organic framework (MIL-101). This is one of the first comparative studies of different composite systems for hydrogen storage and, in addition, the first detailed evaluation of the diffusion kinetics of hydrogen in polymer-based nanoporous composites. The composite films were characterised by surface area and porosity analysis, hydrogen adsorption measurements, mechanical testing and gas adsorption modelling. The PIM-1/AX21 composite with 60 wt% AX21 provides enhanced hydrogen adsorption kinetics and a total hydrogen storage capacity of up to 9.35 wt% at 77 K; this is superior to the US Department of Energy hydrogen storage target. Tensile testing indicates that the ultimate stress and strain of PIM-1/AX21 are higher than those of the MIL-101 or PAF-1 containing composites, and are sufficient for use in hydrogen storage tanks. The data presented provides new insights into both the design and characterisation methods of polymer-based composite membranes. Our nanoporous polymer-based composites offer advantages over powders in terms of safety, handling and practical manufacturing, with potential for hydrogen storage applications either as means of increasing storage or decreasing operating pressures in high-pressure hydrogen storage tanks.
引用
收藏
页码:889 / 901
页数:13
相关论文
共 33 条
[1]  
[Anonymous], 2017, Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles
[2]   Properties of immobile hydrogen confined in microporous carbon [J].
Bahadur, Jitendra ;
Contescu, Cristian I. ;
Ramirez-Cuesta, Anibal J. ;
Mamontov, Eugene ;
Gallego, Nidia C. ;
Cheng, Yongqiang ;
Daemen, Luke L. ;
Melnichenko, Yuri B. .
CARBON, 2017, 117 :383-392
[3]   High-pressure adsorptive storage of hydrogen in MIL-101 (Cr) and AX-21 for mobile applications: Cryocharging and cryokinetics [J].
Bimbo, Nuno ;
Xu, Wesley ;
Sharpe, Jessica E. ;
Ting, Valeska P. ;
Mays, Timothy J. .
MATERIALS & DESIGN, 2016, 89 :1086-1094
[4]   Analysis of optimal conditions for adsorptive hydrogen storage in microporous solids [J].
Bimbo, Nuno ;
Ting, Valeska P. ;
Sharpe, Jessica E. ;
Mays, Timothy J. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2013, 437 :113-119
[5]   Outlook and challenges for hydrogen storage in nanoporous materials [J].
Broom, D. P. ;
Webb, C. J. ;
Hurst, K. E. ;
Parilla, P. A. ;
Gennett, T. ;
Brown, C. M. ;
Zacharia, R. ;
Tylianakis, E. ;
Klontzas, E. ;
Froudakis, G. E. ;
Steriotis, Th. A. ;
Trikalitis, P. N. ;
Anton, D. L. ;
Hardy, B. ;
Tamburello, D. ;
Corgnale, C. ;
van Hassel, B. A. ;
Cossement, D. ;
Chahine, R. ;
Hirscher, M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (03) :1-21
[6]   Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials [J].
Budd, PM ;
Ghanem, BS ;
Makhseed, S ;
McKeown, NB ;
Msayib, KJ ;
Tattershall, CE .
CHEMICAL COMMUNICATIONS, 2004, (02) :230-231
[7]   Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity [J].
Budd, PM ;
Elabas, ES ;
Ghanem, BS ;
Makhseed, S ;
McKeown, NB ;
Msayib, KJ ;
Tattershall, CE ;
Wang, D .
ADVANCED MATERIALS, 2004, 16 (05) :456-+
[8]   A chromium terephthalate-based solid with unusually large pore volumes and surface area [J].
Férey, G ;
Mellot-Draznieks, C ;
Serre, C ;
Millange, F ;
Dutour, J ;
Surblé, S ;
Margiolaki, I .
SCIENCE, 2005, 309 (5743) :2040-2042
[9]   Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles [J].
Ghalei, Behnam ;
Sakurai, Kento ;
Kinoshita, Yosuke ;
Wakimoto, Kazuki ;
Isfahani, Ali Pournaghshband ;
Song, Qilei ;
Doitomi, Kazuki ;
Furukawa, Shuhei ;
Hirao, Hajime ;
Kusuda, Hiromu ;
Kitagawa, Susumu ;
Sivaniah, Easan .
NATURE ENERGY, 2017, 2 (07)
[10]   THEORY OF CHROMATOGRAPHY .10. FORMULAE FOR DIFFUSION INTO SPHERES AND THEIR APPLICATION TO CHROMATOGRAPHY [J].
GLUECKAUF, E .
TRANSACTIONS OF THE FARADAY SOCIETY, 1955, 51 (11) :1540-1551