H-1 and C-13 NMR chemical shift data are used by the computer program CASPER to predict chemical shifts of oligo- and polysaccharides. Three types of data are used, namely, those from monosaccharides, disaccharides, and trisaccharides. To improve the accuracy of these predictions we have assigned the H-1 and C-13 NMR chemical shifts of eleven monosaccharides, eleven disaccharides, twenty trisaccharides, and one tetrasaccharide; in total 43 compounds. Five of the oligosaccharides gave two distinct sets of NMR resonances due to the alpha- and beta-anomeric forms resulting in 48 H-1 and C-13 NMR chemical shift data sets. In addition, the pyranose ring forms of Neu5Ac were assigned at two temperatures, due to chemical shift displacements as a function of temperature. The H-1 NMR chemical shifts were refined using total line-shape analysis with the PERCH NMR software. H-1 and C-13 NMR chemical shift predictions were subsequently carried out by the CASPER program (http://www.casper.organ.su.se/casper/) for three branched oligosaccharides having different functional groups at their reducing ends, namely, a mannose-containing pentasaccharide, and two fucose-containing heptasaccharides having N-acetyllactosamine residues in the backbone of their structures. Good to excellent agreement was observed between predicted and experimental H-1 and C-13 NMR chemical shifts showing the utility of the method for structural determination or confirmation of synthesized oligosaccharides. (C) 2013 Published by Elsevier Ltd.