Fabrication of diamond/SiC composites by Si-vapor vacuum reactive infiltration

被引:49
作者
Yang, Zhenliang [1 ]
He, Xinbo [1 ]
Wu, Mao [1 ]
Zhang, Lin [1 ]
Ma, An [1 ]
Liu, Rongjun [2 ]
Hu, Haifeng [2 ]
Zhang, Yudi [2 ]
Qu, Xuanhui [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Natl Univ Def Technol, Coll Aerosp & Mat Engn, Changsha 410073, Hunan, Peoples R China
关键词
Powders: gas phase reaction; Composites; Thermal properties; SiC; HIGH-PRESSURE; SILICON; GRAPHITIZATION; CERAMICS; CRYSTALS; KINETICS;
D O I
10.1016/j.ceramint.2012.08.084
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Diamond/SiC composites were fabricated by a rapid gaseous Si vacuum reactive infiltration of porous carbon-containing diamond preforms at 1600 degrees C for 1 h. The obtained composites consisted of diamond, beta-SiC and a small fraction of residual unreacted Si; nearly fully dense composites were achieved. Graphitization of diamond did not occur during the infiltration at 1600 degrees C under vacuum. The transgranular fracture mode of diamond crystals and the perfect interface between diamond and SiC suggested a strong interfacial bonding strength. Relatively-low coefficient of thermal expansion (3.6 x 10(-6)/K, 50-400 degrees C) and high thermal conductivity (562 W/m K) of diamond/SiC composites showed great potential for thermal management applications. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:3399 / 3403
页数:5
相关论文
共 22 条
[21]  
Weast R.C., 1974, CRC HDB CHEM PHYS RE, V55
[22]  
Zweben C., 2006, Power Electronics Technology, V32, P40