Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids

被引:56
作者
Naz, Aqdas [1 ]
Javed, Muhammad Umar [1 ]
Javaid, Nadeem [1 ]
Saba, Tanzila [2 ]
Alhussein, Musaed [3 ]
Aurangzeb, Khursheed [3 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Islamabad 44000, Pakistan
[2] Al Yamamah Univ, Coll Comp & Informat Syst, Riyadh 11512, Saudi Arabia
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
关键词
smart grid; forecasting; load; price; CNN; LR; ELR; RELM; ERELM; DEMAND; PREDICTION; REGRESSION; ALGORITHM; NETWORKS;
D O I
10.3390/en12050866
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A Smart Grid (SG) is a modernized grid to provide efficient, reliable and economic energy to the consumers. Energy is the most important resource in the world. An efficient energy distribution is required as smart devices are increasing dramatically. The forecasting of electricity consumption is supposed to be a major constituent to enhance the performance of SG. Various learning algorithms have been proposed to solve the forecasting problem. The sole purpose of this work is to predict the price and load efficiently. The first technique is Enhanced Logistic Regression (ELR) and the second technique is Enhanced Recurrent Extreme Learning Machine (ERELM). ELR is an enhanced form of Logistic Regression (LR), whereas, ERELM optimizes weights and biases using a Grey Wolf Optimizer (GWO). Classification and Regression Tree (CART), Relief-F and Recursive Feature Elimination (RFE) are used for feature selection and extraction. On the basis of selected features, classification is performed using ELR. Cross validation is done for ERELM using Monte Carlo and K-Fold methods. The simulations are performed on two different datasets. The first dataset, i.e., UMass Electric Dataset is multi-variate while the second dataset, i.e., UCI Dataset is uni-variate. The first proposed model performed better with UMass Electric Dataset than UCI Dataset and the accuracy of second model is better with UCI than UMass. The prediction accuracy is analyzed on the basis of four different performance metrics: Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Mean Square Error (RMSE). The proposed techniques are then compared with four benchmark schemes. The comparison is done to verify the adaptivity of the proposed techniques. The simulation results show that the proposed techniques outperformed benchmark schemes. The proposed techniques efficiently increased the prediction accuracy of load and price. However, the computational time is increased in both scenarios. ELR achieved almost 5% better results than Convolutional Neural Network (CNN) and almost 3% than LR. While, ERELM achieved almost 6% better results than ELM and almost 5% than RELM. However, the computational time is almost 20% increased with ELR and 50% with ERELM. Scalability is also addressed for the proposed techniques using half-yearly and yearly datasets. Simulation results show that ELR gives 5% better results while, ERELM gives 6% better results when used for yearly dataset.
引用
收藏
页数:30
相关论文
共 36 条
[1]   An Accurate and Fast Converging Short-Term Load Forecasting Model for Industrial Applications in a Smart Grid [J].
Ahmad, Ashfaq ;
Javaid, Nadeem ;
Guizani, Mohsen ;
Alrajeh, Nabil ;
Khan, Zahoor Ali .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (05) :2587-2596
[2]   Short and medium-term forecasting of cooling and heating load demand in building environment with data-mining based approaches [J].
Ahmad, Tanveer ;
Chen, Huanxin .
ENERGY AND BUILDINGS, 2018, 166 :460-476
[3]  
Bartlett PL, 1997, ADV NEUR IN, V9, P134
[4]   Short-Term Load Forecasting With Deep Residual Networks [J].
Chen, Kunjin ;
Chen, Kunlong ;
Wang, Qin ;
He, Ziyu ;
Hu, Jun ;
He, Jinliang .
IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (04) :3943-3952
[5]  
Durgaba R.P. L., 2014, International Journal of Advanced Research in Computer and Communication Engineering, V3, P8215, DOI DOI 10.17148/IJARCCE.2014.31031
[6]   Forecasting electricity load by a novel recurrent extreme learning machines approach [J].
Ertugrul, Omer Faruk .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 78 :429-435
[7]   Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions [J].
Fallah, Seyedeh Narjes ;
Deo, Ravinesh Chand ;
Shojafar, Mohammad ;
Conti, Mauro ;
Shamshirband, Shahaboddin .
ENERGIES, 2018, 11 (03)
[8]   A short-term building cooling load prediction method using deep learning algorithms [J].
Fan, Cheng ;
Xiao, Fu ;
Zhao, Yang .
APPLIED ENERGY, 2017, 195 :222-233
[9]   A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management [J].
Ghasemi, A. ;
Shayeghi, H. ;
Moradzadeh, M. ;
Nooshyar, M. .
APPLIED ENERGY, 2016, 177 :40-59
[10]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501