Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators

被引:4
|
作者
Basu, Ayanendranath [1 ]
Ghosh, Abhik [1 ]
Mandal, Abhijit [2 ]
Martin, Nirian [3 ,4 ]
Pardo, Leandro [5 ,6 ]
机构
[1] Indian Stat Inst, Interdisciplinary Stat Res Unit ISRU, 203 BT Rd, Kolkata 700108, W Bengal, India
[2] Wayne State Univ, Dept Math, 656 W Kirby, Detroit, MI 48202 USA
[3] Univ Complutense Madrid, Interdisciplinary Math Inst, Madrid 28003, Spain
[4] Univ Complutense Madrid, Dept Financial & Actuarial Econ & Stat, Madrid 28003, Spain
[5] Univ Complutense Madrid, Interdisciplinary Math Inst, Madrid 28040, Spain
[6] Univ Complutense Madrid, Dept Stat & ORI, Madrid 28040, Spain
来源
STATISTICAL METHODS AND APPLICATIONS | 2021年 / 30卷 / 03期
关键词
Generalized linear models; Minimum density power divergence estimator; Wald-type tests; Robustness; GENERALIZED LINEAR-MODELS; REGRESSION-MODELS; INFERENCE;
D O I
10.1007/s10260-020-00544-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of robust inference under the generalized linear model (GLM) with stochastic covariates. We derive the properties of the minimum density power divergence estimator of the parameters in GLM with random design and use this estimator to propose robust Wald-type tests for testing any general composite null hypothesis about the GLM. The asymptotic and robustness properties of the proposed tests are also examined for the GLM with random design. Application of the proposed robust inference procedures to the popular Poisson regression model for analyzing count data is discussed in detail both theoretically and numerically through simulation studies and real data examples.
引用
收藏
页码:973 / 1005
页数:33
相关论文
共 50 条
  • [11] A Wald-type test statistic for testing linear hypothesis in logistic regression models based on minimum density power divergence estimator
    Basu, Ayanendranath
    Ghosh, Abhik
    Mandal, Abhijit
    Martin, Nirian
    Pardo, Leandro
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 2741 - 2772
  • [12] Small-sample adjustments for Wald-type tests using sandwich estimators
    Fay, MP
    Graubard, BI
    BIOMETRICS, 2001, 57 (04) : 1198 - +
  • [13] Robust approach for comparing two dependent normal populations through Wald-type tests based on Renyi's pseudodistance estimators
    Castilla, Elena
    Jaenada, Maria
    Martin, Nirian
    Pardo, Leandro
    STATISTICS AND COMPUTING, 2022, 32 (06)
  • [14] A New Class of Robust Two-Sample Wald-Type Tests
    Gaosh, Abhik
    Martin, Nirian
    Basu, Ayanendranath
    Pardo, Leandro
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2018, 14 (02):
  • [15] Robust approach for comparing two dependent normal populations through Wald-type tests based on Rényi’s pseudodistance estimators
    Elena Castilla
    María Jaenada
    Nirian Martín
    Leandro Pardo
    Statistics and Computing, 2022, 32
  • [16] ROBUST WALD-TYPE TESTS OF ONE-SIDED HYPOTHESES IN THE LINEAR-MODEL
    SILVAPULLE, MJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (417) : 156 - 161
  • [17] Robust Reinforcement Learning-based Wald-type Detector for Massive MIMO Radar
    Ahmed, Aya Mostafa
    Fortunati, Stefano
    Sezgin, Aydin
    Greco, Maria S.
    Gini, Fulvio
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 846 - 850
  • [18] A Wald-type test statistic based on robust modified median estimator in logistic regression models
    Hobza, Tomas
    Martin, Nirian
    Pardo, Leandro
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (12) : 2309 - 2333
  • [19] A comparison of related density-based minimum divergence estimators
    Jones, MC
    Hjort, NL
    Harris, IR
    Basu, A
    BIOMETRIKA, 2001, 88 (03) : 865 - 873
  • [20] Robust tests based on dual divergence estimators and saddlepoint approximations
    Toma, Aida
    Leoni-Aubin, Samuela
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (05) : 1143 - 1155