Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators

被引:4
|
作者
Basu, Ayanendranath [1 ]
Ghosh, Abhik [1 ]
Mandal, Abhijit [2 ]
Martin, Nirian [3 ,4 ]
Pardo, Leandro [5 ,6 ]
机构
[1] Indian Stat Inst, Interdisciplinary Stat Res Unit ISRU, 203 BT Rd, Kolkata 700108, W Bengal, India
[2] Wayne State Univ, Dept Math, 656 W Kirby, Detroit, MI 48202 USA
[3] Univ Complutense Madrid, Interdisciplinary Math Inst, Madrid 28003, Spain
[4] Univ Complutense Madrid, Dept Financial & Actuarial Econ & Stat, Madrid 28003, Spain
[5] Univ Complutense Madrid, Interdisciplinary Math Inst, Madrid 28040, Spain
[6] Univ Complutense Madrid, Dept Stat & ORI, Madrid 28040, Spain
来源
STATISTICAL METHODS AND APPLICATIONS | 2021年 / 30卷 / 03期
关键词
Generalized linear models; Minimum density power divergence estimator; Wald-type tests; Robustness; GENERALIZED LINEAR-MODELS; REGRESSION-MODELS; INFERENCE;
D O I
10.1007/s10260-020-00544-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of robust inference under the generalized linear model (GLM) with stochastic covariates. We derive the properties of the minimum density power divergence estimator of the parameters in GLM with random design and use this estimator to propose robust Wald-type tests for testing any general composite null hypothesis about the GLM. The asymptotic and robustness properties of the proposed tests are also examined for the GLM with random design. Application of the proposed robust inference procedures to the popular Poisson regression model for analyzing count data is discussed in detail both theoretically and numerically through simulation studies and real data examples.
引用
收藏
页码:973 / 1005
页数:33
相关论文
共 50 条
  • [1] Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators
    Ayanendranath Basu
    Abhik Ghosh
    Abhijit Mandal
    Nirian Martin
    Leandro Pardo
    Statistical Methods & Applications, 2021, 30 : 973 - 1005
  • [2] Generalized Wald-type tests based on minimum density power divergence estimators
    Basu, A.
    Mandal, A.
    Martin, N.
    Pardo, L.
    STATISTICS, 2016, 50 (01) : 1 - 26
  • [3] Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator
    Ayanendranath Basu
    Abhik Ghosh
    Nirian Martin
    Leandro Pardo
    Metrika, 2018, 81 : 493 - 522
  • [4] Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator
    Basu, Ayanendranath
    Ghosh, Abhik
    Martin, Nirian
    Pardo, Leandro
    METRIKA, 2018, 81 (05) : 493 - 522
  • [5] Robust Wald-type test statistics based on minimumC-divergence estimators
    Maji, Avijit
    Pardo, Leandro
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (14) : 2592 - 2613
  • [6] Robustness of Minimum Density Power Divergence Estimators and Wald-type test statistics in loglinear models with multinomial sampling
    Calvino, Aida
    Martin, Nirian
    Pardo, Leandro
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386
  • [7] Robust Wald-type tests based on minimum Renyi pseudodistance estimators for the multiple linear regression model
    Castilla, E.
    Martin, N.
    Munoz, S.
    Pardo, L.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (14) : 2655 - 2680
  • [8] Robust Wald-type tests under random censoring
    Ghosh, Abhik
    Basu, Ayanendranath
    Pardo, Leandro
    STATISTICS IN MEDICINE, 2021, 40 (05) : 1285 - 1305
  • [9] ROBUST TESTS BASED ON MINIMUM DENSITY POWER DIVERGENCE ESTIMATORS AND SADDLEPOINT APPROXIMATIONS
    Toma, Aida
    MATHEMATICAL REPORTS, 2010, 12 (04): : 383 - 392
  • [10] Influence analysis of robust Wald-type tests
    Ghosh, Abhik
    Mandal, Abhijit
    Martin, Nirian
    Pardo, Leandro
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 147 : 102 - 126