Asymptotic analysis in convex composite multiobjective optimization problems

被引:7
作者
Chen, Zhe [1 ,2 ]
机构
[1] Sch Econ & Management, Res Ctr Contemporary Management, Beijing 100084, Peoples R China
[2] Sichuan Univ, Sch Business, Chengdu 610064, Peoples R China
基金
美国国家科学基金会;
关键词
Convex composite multiobjective optimization; Asymptotic analysis; Proximal-type method; Nonemptiness and compactness; Weak Pareto optimal solution; WEAKLY EFFICIENT SOLUTIONS; VECTOR OPTIMIZATION; OPTIMALITY CONDITIONS; SOLUTION SETS; NONEMPTINESS; COMPACTNESS; ALGORITHMS;
D O I
10.1007/s10898-012-0032-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present a unified approach for studying convex composite multiobjective optimization problems via asymptotic analysis. We characterize the nonemptiness and compactness of the weak Pareto optimal solution sets for a convex composite multiobjective optimization problem. Then, we employ the obtained results to propose a class of proximal-type methods for solving the convex composite multiobjective optimization problem, and carry out their convergence analysis under some mild conditions.
引用
收藏
页码:507 / 520
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 1998, Variational Analysis
[2]  
[Anonymous], 1988, Lecture Notes in Mathematics
[3]  
[Anonymous], 1987, Unconstrained Optimization: Practical Methods of Optimization
[4]  
AUSLENDER A, 2003, SPRINGER MG MATH, pR7
[5]   Proximal methods in vector optimization [J].
Bonnel, H ;
Iusem, AN ;
Svaiter, BF .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) :953-970
[6]  
Bot R., 2009, ACTA MATH HUNG, V116, P177
[7]   A Gauss-Newton method for convex composite optimization [J].
Burke, JV ;
Ferris, MC .
MATHEMATICAL PROGRAMMING, 1995, 71 (02) :179-194
[8]  
Chen GY, 2005, LECT NOTES ECON MATH, V541, P1, DOI 10.1007/3-540-28445-1
[9]   Generalized proximal point algorithms for multiobjective optimization problems [J].
Chen, Z. ;
Huang, X. X. ;
Yang, X. Q. .
APPLICABLE ANALYSIS, 2011, 90 (06) :935-949
[10]   Generalized viscosity approximation methods in multiobjective optimization problems [J].
Chen, Zhe .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (01) :179-192